
RESEARCH REPORT DOCUMENTATION PAGE

1. Report No.
UND 21-01

2. Report Date
May 2024

3. Contract No.
91210512

4. Project No.

5. Title and Subtitle
Smart Inspection of Ancillary Structure in North Dakota Using
Unmanned Aerial Systems.

6. Report Type

Work Plan
Construction
Evaluation
Final

7. Project No.

8. Project No.

9. Project No.

10. Project No.

11. Author(s)/Principal Investigator(s)
Dr. Sattar Dorafshan
12. Performing Organization Name and Address

NDDOT M+R North Dakota DOT
NDDOT OTHER* Materials and Research Division
NDSU 300 Airport Road
UND Bismarck ND 58504-6005
UGPTI
OTHER*
*See supplementary notes

13. Sponsoring Agency Name and Address

 North Dakota DOT
 Materials and Research Division
 300 Airport Road
 Bismarck ND 58504-6005

14. Supplementary Notes

15. Abstract

Objective

The research team proposes a UAS payload designed for effective and accurate inspection of ancillary structures. The proposed prototype will be
equipped with several sensors; and will allow inspectors to perform both visual and NDE inspections. AI models will be used for defect detection, and
data fusion in real-time. The prototype will have novel features that do not currently exist for highway structures inspections and asset management.

Scope
This project aims to develop a UAS-based system for autonomous defect detection in highway ancillary structures using AI and sensor technology. The
work will be carried out in six tasks over a span of two years. Initially, a literature review will inform the selection of AI models, sensors, and equipment.
The team will then integrate miniature sensors, design a lightweight payload, and develop software for data collection. AI models for defect detection
will be trained using a comprehensive database of sensor data and images. The prototype system will be tested in controlled and real-world
environments, with field inspections validating its performance. Finally, a comprehensive report will summarize the project findings, including the design
and validation of the system.

Summary

This report details the development of an Unmanned Aerial System (UAS) equipped with AI for real-time, autonomous defect detection in highway
ancillary structures. The system uses deep learning models to detect common defects such as corrosion, cracks, and missing bolts. The UAS payload
includes visual and thermal cameras, a microcomputer for processing, and a ground station laptop with a Graphical User Interface (GUI) for inspectors
to collect and analyze data. Models trained on annotated datasets achieved over 90% accuracy. While the system performed well in tests, a limitation
was identified in slow processing time during real-time inspections.

16. Key Words
Ancillary Structure, Structural
Inspection, Automated
Inspection, Crack Detection,
Corrosion Detection, Artificial
Intelligences, Unmanned Aerial
Systems, Deep Learning,
Machine Learning

17. Distribution Statement
 No restrictions. This document is available to the public from:

North Dakota Department of Transportation
Materials and Research Division:

300 Airport Road
Bismarck ND 58504-6005

Office: (701) 328-6900 Fax: (701) 328-0310

18. No. of Pages
91

19. File type/Size

Pdf/ 6.1 mb

P a g e | i

SMART INSPECTION OF ANCILLARY STRUCTURES IN NORTH

DAKOTA USING UNMANNED AERIAL SYSTEMS

North Dakota Department of Transportation

Final Report

Prepared for:

North Dakota Department of Transportation

Prepared by:

Amrita Das (Graduate Research Assistant)

Faezeh Jafari (Graduate Student)

Dalton Reitz (Research Engineer)

Dr. Sattar Dorafshan (Principal Investigator)

Department of Civil Engineering

University of North Dakota,

Grand Forks, North Dakota, USA.

Jack Heichel (Graduate Student)

Rajrup Mitra (Graduate Research Assistant)

Dr. Naima Kaabouch (Co Investigator)

School of Electrical Engineering and Computer Science

University of North Dakota,

Grand Forks, North Dakota, USA.

May 2024

P a g e | ii

Acknowledgement

The research project is chiefly funded by the North Dakota Department of Transportation.

The authors thank the North Dakota Department of Transportation Materials and Research,

especially T. J Murphy and Nancy Huether for their invaluable assistance and co ntinuous

flow of communication and information.

The authors would like to extend their gratitude to Bruce Dockter, Senior Lecturer at the

department of Civil Engineering of University of North Dakota for helping in experimental

procedures carried out in this project. The authors are grateful to Zachary Stangl, former

aviation student, Scott Keane, UAS chief Pilot, and Zachary Reeder, Project Manager,

Research Institute for Autonomous System at University of North Dakota for data

collection at different phases of the project

P a g e | iii

Disclaimer

The contents of this report reflect the work of the authors, who are responsible for the

results and the accuracy of the information presented.

P a g e | iv

Table of Contents

 Executive Summary

1 Introduction ... 1

2 Inspection Methodology .. 2

2.1 Current Practice for Inspection ... 2

2.2 Autonomous defect detection method ... 4

2.3 Real time defect detection using UAS ... 5

2.4 Choice of UAV ... 6

2.5 Wireless Communication .. 7

2.6 Smart Graphical User Interface .. 7

2.7 Cameras ... 8

2.8 Data Transfer... 8

3 Graphical User Interface .. 9

3.1.1 Interactive Defect Identification on GUI ... 12

3.1.2 Back-end GUI Processes ... 13

3.2 AI model Architecture ... 14

3.2.1 Corrosion detection model .. 14

3.2.2 Crack detection model ... 16

3.2.3 Bolt Detection Method... 19

3.3 Data Annotation .. 20

3.4 Data Augmentation... 21

4 Payload System Design ... 22

4.1 Payload Equipment... 23

4.2 Power Consumption ... 24

4.3 Custom Modeled Payload Fastening System .. 25

4.4 Validation .. 29

P a g e | v

4.4.1 System Validation in Controlled Environment... 29

4.4.2 System Validation with Field Test ... 30

5. Limitation and future work ... 33

References ...35

5 User Guide ... 38

5.1 Introduction ... 38

5.2 Hardware Components... 38

5.3 Software Components.. 40

5.4 System Architecture ... 40

5.5 Startup Instructions... 41

5.6 Operation Instruction ... 43

5.6.1 Functionalities of the GUI ... 44

5.6.1.1 Initial Launch page ... 44

5.6.1.2 Payload Control Page ... 44

5.6.1.3 Image Masking page .. 49

5.6.1.4 Repository Page .. 50

5.6.1.5 AI Process Retraining Control page... 52

5.6.1.6 Step-by-step Instructions for Inspection Mission ... 53

5.6.1.7 Interactive functionality for Corrosion and Crack defects56

5.6.1.8 Interactive functionality for Bolt defects ... 58

5.6.2 Step-by-step Instructions for Model Retraining ... 60

6 Technical Section ... 61

6.1 Microcomputer wireless connectivity .. 61

6.2 Auto connectivity between laptop and the microcomputer....................................... 61

6.3 Form 1 Overview .. 62

6.4 Form 4 Overview .. 63

6.5 GStreamer .. 63

P a g e | vi

6.6 Visual image capture.. 64

6.7 Thermal image capture .. 65

6.8 Visual image live streaming .. 66

6.9 Thermal image live streaming ..66

6.10 Data transfer from payload and laptop... 67

6.11 Image Splitting at Microcomputer End ... 70

6.12 Image Cropping at Microcomputer End .. 71

6.13 AI Processes Corrosion .. 72

6.14 AI Processes Crack ... 72

6.15 AI Processes Bolt Issue .. 73

Appendix

1.Materials and Manufacturing ... 75

1.1 Stratasys F370 Composite 3D Printer.. 75

1.2 ABS M30 Black/Ivory Material Properties .. 76

2 Component Design .. 78

2.1 Battery and Jetson Housing... 78

2.2 Battery and Jetson Housing Brackets .. 80

2.3 Gimbal Housing.. 83

2.4 Gimbal Housing Brackets ... 85

2.5 Camera Housing ... 87

2.6 Camera Housing Clip-on Cover ... 90

P a g e | vii

List of Tables
Table 1: Number of ancillary structures at North Dakota ... 2

Table 2: UAV Comparison.. 6

Table 3: Camera Comparison ... 14

Table 4: Payload Equipment ... 23
Table 5: Power Consumption.. 24

Table 6: Battery Comparison .. 24

Table 7: Flight Datasheet... 32

Table 8: Hardware Components ... 38

Table 9: Software Components... 40

Table 10: System Block Diagram... 41

Table 11: GUI Launch Page Description .. 44

Table 12: Run Process Options... 46

Table 13: Miscellaneous GUI Buttons... 49

Table 14: Python Socket Files .. 69

Table 15: Python Splitting Files ... 70

List of Figures

Figure 1: Inspection with (a) Bucket truck and (b) Climbing... 3

Figure 2: Thickness Measurement at Critical Location of Structure Post 4

Figure 3: GUI Main Screen... 10

Figure 4: GUI Crop Function.. 11

Figure 5: GUI Repository..12

Figure 6: The architecture of AlexNet ... 14

Figure 7: Performance evaluation of model by varying the number of images 15

Figure 8: Data augmentation... 17

Figure 9: Examples of using a superimposed approach to augment data, 17

Figure 10: Data augmentation, a) raw image, b) rotated by 45 compared to original image,

c) rotated by 90 compared to original image. ... 18

Figure 11: AlexNet architecture in paper. ... 19

Figure 12: Bolt Detection Method.. 20

Figure 13: Structure with a missing bolt, shown by bonding box annotation 20

Figure 14: FRCNN result. a) multiple missing bolt output, b) multiple loosen bolt output,

c) black loosen bolt, d) missing bolt, e) loosen nut, f) loosened nut.................................... 21

P a g e | viii

Figure 15: System Block Diagram ... 22

Figure 16: Prototype Housing... 26

Figure 17: Prototype Housing Inside ... 26

Figure 18: Gimbal Adapter 1 .. 27

Figure 19: Gimbal Adapter 2 .. 28

Figure 20: UAV Integration .. 28
Figure 21 (a)& (b): Pre-flight condition checking at Lab ... 29

Figure 22 (a)& (b): Loosen Bolt and Corrosion detection by the AI models 29

Figure 23:Inspection Location, 3526 Gateway Drive, Grand Forks, ND 30

Figure 24: (a) &(b) Pre-flight condition checking ... 31

Figure 25: (c) &(d) Inspection team during the outdoor flight ... 31

Figure 26: (a) Corrosion detection results (b) confusion matrix .. 32

Figure 27: Saved image in repository after completing the inspection (a) Corrosion (b)

Crack & defective bolt ... 32

Figure 28: System Connections .. 39

Figure 29: Wi-Fi network .. 42

Figure 30: GUI Launch Page .. 43

Figure 31: Payload Control Page .. 43
Figure 32: Payload Ping... 43

Figure 33: GUI Launch Page .. 44

Figure 34: Payload Control Page Details .. 45

Figure 35: Crack Processing Feedback.. 47

Figure 36: Bolt Processing Feedback... 48

Figure 37: Image Masking Page ... 50

Figure 38: Repository Page ... 51

Figure 39: Select Defect Type .. 51

Figure 40: Retraining Page .. 52

Figure 41: Select Defect Type .. 53

Figure 42: Image after Corrosion Process ... 57

Figure 43: Image After Corrosion Process and Inspector Interaction 58
Figure 44: Bolt Defect Box Feedback ... 60

P a g e | ix

Executive Summary

Periodic inspection of highway ancillary structures plays a vital role in maintaining

uninterrupted highway operation. Utilizing small Unmanned Aerial Systems (UAS)

technology allows for ancillary structure inspections to become faster and cheaper,

providing a benefit to state agencies and the public in the state of North Dakota. However,

the existing available UAS technology and UAS payload does not offer real-time

autonomous defect detection using artificial intelligence (AI) updated with inspector input.

This report describes the design and functionality of a payload equipped UAS that can

provide real-time inspection of ancillary structures with a developed built-in AI model

interface. The models are developed using deep learning models to autonomously detect

common defects in ancillary structures (corrosion, missing bolts, and cracks), to assist

inspectors for more robust condition assessment. The developed payload sys tem includes

a microcomputer capable of running multiple Convolutional Neural Network (CNN)

models during flight. The research team developed a set of annotated datasets for each type

of defect investigated in this project. AlexNet-integrated models for corrosion and crack

detection were trained on 9257 and 1500 images, respectively. The models label tiles of

each image if corrosion or crack is detected. Faster RCNN was trained on 1000 images for

defective bolted connection that are common in ancillary structures. The trained R-CNN

automatically puts a bonding box around the defected area in the bolted connection images.

All models reached over 90% accuracy in training and validation. A Graphical User

Interface (GUI) is developed to interact with the payload through a laptop. The inspector

can run the GUI to collect visual or thermal images, classify defects, accept or reject the

defects, re-train the models based on new annotated data, and store final defect detection

results. The payload consist of both bota and thermal sensing to capture images and live

stream, relaying the data to the ground station laptop through a shared Wi-Fi network. A

live stream of the visual and thermal sensors allows the operator to quickly assess the

structure and determine which regions need further evaluation. The payload consists of

Ground Station Laptop with GUI and repository, Portable Wi-Fi router, Microcomputer

Board, Visual camera, Thermal camera, Housing and mounting equipment, Gimbal. The

payload functions were tested and verified in realistic environments. The payload

performed well during the test but was found to have a limitation of slow processing time.

P a g e | 1

1 Introduction

Non-bridge structures such as overhead sign structures, high mast light poles, and traffic

signal mast arms are referred to as ancillary structures on highways. Regular inspection of

these structures is important. To ensure structural integrity , all responsible authorities

require annual inspections of anchor bolts, joints, and base plates. Negligence to do so over

the time can reduce the service life and, in many cases, cause the structure to fail. Among

these, corrosion, which reduces the struc ice life, is the destructive attack of a

metal by chemical or electrochemical reaction with its environment. Though some

ancillary steel structures may be painted, protection is most often provided using

galvanizing or fabrication using weathering steel. Unfortunately, environmental corrosion

cannot be generalized in terms of sources. Several factors such as exposure time to the

corrosive environment, atmospheric pollution level might control corrosion at micro level.

The authors of [1-2] revealed that starting with the rough texture at the surface corrosion

can propagate inside the structure. This not only increases the maintenance cost due to the

continuous reactivity with the surrounding electrolyte but also responsible for 42% of

failure condition of infrastructures [3]. The other defects that need to be taken care of are

the fatigue crack and defective bolts. High ancillary structures are subjected to dynamic

loads such as wind gusts, truck induced gust etc. This cyclic loading can introduce fatigue

stress which may be started earlier than the yield stress at static loading. In addition to this,

defective welding can initiate fatigue cracks by acting as a weak joint. However, joint

damage can happen due to loosening or missing bolts too. The fastener can be loosened

and started to contribute to failure of the joint. Though the initiation of failure of an anchor

rod or bolt in a structural connection may seem apparent, even secondary fasteners that fail

can lead to sign breakage and small items falling into traffic.

The cause of a joint failure is not only cyclic loads, but bolted joint failure can also occur

due to environmental causes [4]. For instance, higher temperature may reduce the load

carrying capacity of the bolt and thus lead the structure to be unstable. Because of losing

structural integrity, catastrophic accidents may take place. Thus, effective monitoring and

diagnosis of the bolt connections are necessary to ensure that structures are safe and

reliable.

P a g e | 2

In the United States, periodic inspections of in-service structures such as bridges, dams etc.

cost significant amount of money to be conducted by human labor [5]. Satisfying the

maintenance and protection of traffic safety requirements while controlling costs wi thin

the acceptable limits could be challenging in the current practice. There is a need to

establish a safe, repeatable, and cost-effective methodology to inspect ancillary structures

in North Dakota. Autonomous defect detection mechanism integrated with unmanned

aerial vehicles (UAVs) can be used as a safe and inexpensive measure to introduce

revolutionary refinement in this arena. The MDOT (2019) has shown 60% cost savings

associated with drone-based inspections; moreover, a report from the American

Association of State Highway and Transportation Officials (AASHTO 2018) has

proclaimed that 35 of 44 reporting state DOTs with previous experience are deploying

aerial platforms in some capacity.

2 Inspection Methodology

2.1 Current Practice for Inspection

There are approximately 1000 different types of state-owned ancillary structures (Table 1)

on the different highways of North Dakota. Visual Inspection is the currently practiced

method for defect assessment, which is time-consuming for vast areas, impossible for

inaccessible areas and subjective to the inspector. In addition to this, gaining access to the

structure for inspection personnel is one of the most difficult challenges for the inspection

and evaluation of overhead sign structures. Inspection challenges arise from the need to

satisfy Maintenance and Protection of Traffic (MOT) safety requirements while cont rolling

costs within acceptable limits. Such access strategies include night work, mobile lane

closures, and other innovative methods for short-term lane closures. Moreover, FHWA

recommends to be equipped with enough auxiliary equipment to perform any kind of

structural inspection [6].

Table 1: Number of ancillary structures at North Dakota

Type Number (approximate)

Traffic Signals 450

Overhead Signs 175

High Mast Lights 375

P a g e | 3

Sign structure inspection can be a hazardous structural inspection. Per guidelines, the sign

structures are often -speed roads where work zone

safety setups could be extremely difficult to set up [6]. In consequence, it is routine that

slippery structural members. Vehicle mounted bucket (Figure 1) is the most typical way to

access the sign structure. A 30 ft boom is sufficient for inspection. But most of the time

these vehicles should be rented from cable and telephone companies. Because of traffic in

the morning, some work needs to be postponed to nighttime. If inspections are planned to

be done at night, adequate lighting must be provided to avoid hazards.

Figure 1: Inspection with (a) Bucket truck and (b) Climbing [2]

For external corrosion and bolt missing/loosening detection, visual inspection is the most

reliable method. But for crack and internal corrosion detection, non-Destructive Testing

(NDT) is an important tool used for inspection of ancillary structures. Examples include

small fatigue cracks in welds, corrosion occurring on the interior of the structural element,

and cracked anchor rods. Usually, a dye penetrant test and magnetic particle test are

performed to detect surface cracks. For the internally propagated cracks, eddy current is

corrosion which may be externally invisible.

P a g e | 4

Figure 2: Thickness Measurement at Critical Location of Structure Post [2]

Current inspection techniques can be challenging to the transportation agencies due to the

requirement of preplanning for the lane closure [7]. Moreover, onsite documentation is

another challenge as lack of coordination may lead the inspector to revisit the site once

which might be inconsistent.

2.2 Autonomous defect detection method

Different image-based algorithms have been used by the researchers to identify the

corrosion in steel structures. Conventional image processing methods such as image

registration by the binary information, k-mean clustering, color space changing etc. were

used by the researchers [8-10, 1, 11] in detecting the corroded pixels from the images. On

the other hand, a model has been developed by Lee et al. [12] to identify the defective pixel

from the variation of statistical parameters such as mean, mode, median etc. Some

researchers stepped forward by using different deep learning models such as Faster RCNN

[13], ResNet 50 [13], VGG16 [14] for detecting corrosion in steel structures. Fatigue cracks

in steel structure is a challenging problem to mitigate [15]. Unfortunately, fatigue cracks

in steel did not get the attention of many researchers as concrete cracks due to absence of

realistic data for AI model development. In the past, nondestructive methodology such as

attaching piezoelectric material [16] with drone used to determine the crack in concrete

bridge.

On the other hand, a crack detection algorithm using canny edge detector has been

developed by the authors of [17, 18] which detected cracks with less than 0.15 mm error

to ground truth. The problem with the conventional image-based algorithm is that it needs

P a g e | 5

user input threshold value which may change depending on the quality of the dataset.

Dorafshan et al. [19] also revealed that the deep learning models such as AlexNet

outperformed different types of edge detector for detecting concrete cracks. A deep

convolution neural network has been developed by the authors of [20] to detect and localize

crack in concrete bridges from images. Again, the authors of [12] developed an automated

process using deep learning models for detecting, localizing, and mapping of five different

types of defects in concrete bridges and reported overall 85.3% accuracy. The application

of different artificial intelligence models was not limited to corrosion and crack detection

in the infrastructures. The authors of [19] used image based deep learning algorithm such

as Hough transformation to estimate the looseness of the bolted joints. On the other hand,

the authors [20] developed a deep learning model with images collected from the real steel

infrastructure showing different modes of rotation of loosened bolts. However, the authors

of [21] generated a deep learning convolution neural network from the signal collected

from the existing nondestructive method such as ultrasonic wave propagation.

2.3 Real time defect detection using UAS

The use of UAS for detection of structural defects is not novel, but very few solutions

utilize an approach that provides AI defect detection support in real time. Experimental

research using UAS for detecting delamination, corrosion, cracks on photovoltaics (PV)

modules used in power plants was carried out by the authors of [22]. A thermal camera

mounted on UAS (PLP-610) was used to collect the images and processed them on the

ground using different image-based algorithms.

 Eschmann et al. [23] implemented an eight-rotor unmanned aerial vehicle (UAV) with a

payload equipped with different sensors such as gyroscopes, accelerometers, and a

barometric altitude sensor to do the aerial survey as a part of regular inspection s of the

buildings. In addition, Chen et al. [13] used a high-definition camera mounted on six-axis

UAV platform with some intelligent features such as obstacle avoidance, positioning, and

stable hover to detect corrosion in large steel structures.

A novel approach is introduced in [24], wherein a UAS solution is proposed that can mount

onto a wall, climb along its flat surface, and identify cracks. While this method would not

be practical on ancillary structures which are usually not flat, the paper discusses real-time

P a g e | 6

use of deep learning models to support the identification of cracks. The crack detection

models were proven successful at the short range, as lighting was not a significant factor.

An method, that is entirely autonomous, to inspect bridges for common defects is proposed

and partially demonstrated in [25]. The autonomous flight was scaled to a limited,

controlled environment. AI Models for the defect types of steel corrosion, steel crack, and

loosened bolt were demonstrated to run simultaneously with high accuracy.

2.4 Choice of UAV

The choice of a UAV to use in an imaging application depends on several factors. The

payload weight should be estimated based on the intended application. The UAV to carry

the payload should have a payload capacity greater than the expected payload weight, with

adequate margin (at least 20% margin). The margin is to account for any other weight that

may get added to the payload as the design process progresses. Another factor that may

limit the choice of UAV is the adaptability of the flight control system. Some drone

manufacturers may protect the Intellectual Property (IP) of the UAV and flight control

system, which requires the control of the payload system to be separate from that of the

system should be evaluated to determine if the sensor payload can be equipped onto it.

Many UAVs include a gimbal system that maintains a stable camera angle, even as the

-in gimbal system for the payload

provides a stable mounting to ensure no motion blur in images. Table 2 provides a

comparison of different UAVs in terms of the number of rotors, payload weight, diameter,

and maximum flight time.

Table 2: UAV Comparison

Name Rotors Payload Diameter Max Flight

Time*

DJI Mavic Air 2 4 300g 30.2 cm 34 min

DJI Phantom 4 Pro 4 500g 35 cm 30 min

Yuneec Typhoon H 6 1800g 52 cm 25 min

DJI Matrice 600 Pro 6 6000g 113.3 cm 32 min

Freefly Alta 6 6 6800g 112.6 cm 45 min

P a g e | 7

2.5 Wireless Communication

The sensor data must be sent in real-time to the ground control station (GCS) at a high

speed due to the high number and size of frames. To achieve this, a long-range and high-

speed communication system is needed for the UAV to communicate with the GCS.

\In many UAV systems, real-time data is transmitted from the UAV to the GCS with a live

feed of the camera equipped on the UAV. The payload designer for such project should

consider using the existing communication system between the GCS and the UAV, which

can reduce the weight and power consumption. Also, the range of the communication

network will remain consistent.

In the review of communication systems used by similar UAV imaging applications, two

techniques are primarily used. The first technique is to have the sensor data sent on the

same network as used by the Flight Control System. The second technique is to imp lement

a communication network separate from the Flight Control System. This has no risk of

slowing the flight controls. However, this technique likely adds to the weight and power

consumption of the UAV payload. Both disadvantages reduce the flight time of the UAV.

As previously mentioned, reduced flight time may result in longer mission time as the UAV

may need to be charged.

2.6 Smart Graphical User Interface

The mission control and data displaying system form the user-interface level in the UAV

system, wherein the mission commands and instructions are conveyed to the UAV and data

captured using the payload sensors are processed, analyzed, and displayed at the user end

in form of a GUI based application. The display system serves as a visual inte rface between

the UAV and the GCS staff. In the realm of autonomous systems, smart GUI-based user

interfaces have long played an important role.

There are some research efforts aiming to provide ways to connect UAVs and the cloud

infrastructure forming a smarter way of interfacing between the UAV and the ground

control. Lin et al. [25] put forward a solution of integrating the cloud service of Google

Earth with the UAV. This was done using transmission of data to a MySQL database using

P a g e | 8

an android phone. The user used a web browser to access the database's UAV information.

UAVs were controled using a specific flight plan defined in the database via a waypoint.

Similarly, a multirobot control and communication architecture with a user interface were

developed by the authors of [26].

2.7 Cameras

The cameras deployed on the payload were selected to satisfy three key requirements. First,

they must be lightweight so they could be used on a variety of UAV platforms. Second,

there must be visual and thermal cameras in the payload to augment detection. Live

streaming with both cameras allow for real-time imaging to assist the inspector in defect

detection. The third requirement is that the sensors must provide high resolution images to

the AI models. Any unwanted blur can affect the ability of the AI models to identify

defects. Also, the live streaming is best with high quality images to ensure the inspector

knows the areas of interest to run the defect detection models.

The selected visual camera is an Arducam HQ, with a resolution of 12.3 MP. The resolution

was dropped to 1980 * 1080 pixels to improve the processing time of the neural networks

running in real time. The sensor alone has a low focal point with no lens, meaning the

sensor alone would only focus on a close object. Also, the aperture is wide, meaning that

the depth of field it can focus on would be very limited. To improve focal length and depth

of field, an external lens is added to the Arducam to ensure the camera can focus on many

objects simultaneously at a moderate distance. This lens adds weight and complexity to the

design but the resulting camera is lighter and less expensive than other drone-mounted

cameras, with similar image quality.

The selected thermal camera is a longwave infrared (LWIR) thermal camera. This camera

uses a 12 µm pitch Vanadium Oxide (VOx) uncooled detector capable of capturing 640 *

512 pixels. For the live streaming of the sensors, GStreamer was used. It is an open-source

pipeline-based multimedia framework.

2.8 Data Transfer

To transmit a large amount of data with a high throughput, an IEEE 802.11ac Wi-Fi

network is established to connect the Jetson and ground control station. The Wi-Fi is

established by a router transmitting at the 5 GHz (433 Mbps) band. Secure Shell (SSH)

P a g e | 9

protocol is used for cryptography of the data to prevent spoofing. The payload uses a static

IP address, so Wi-Fi password protection should be implemented as needed for securing

the system. The Transmission Control Protocol (TCP) Server-Client architecture was

implemented for the robust transfer of data from payload to the GCS

microcomputer acts as the server, reserving a port number to listen for commands. The

GCS acts as the client, sending various commands to Jetson. When the computer sends a

command to Jetson, the Jetson runs the appropriate processing, which is often a still image

capture, stream request, or AI model(s) to be run on the latest image.

3 Graphical User Interface

The control of the payload is handled by a Graphical User Interface (GUI) run on a Ground

Station laptop. This GUI is written in C# language, developed in Microsoft Visual Studio

2022. The GUI is compiled as an executable so that most computers can run it easily. A

user guide is provided as part of the GUI to assist the inspector in using each function of

the GUI with the payload, as well as technical details on the back-end processing.

The GUI has several functions:

1. Command the payload to do the following:
a. Capture still images from visual or thermal cameras
b. Start live stream from visual or thermal cameras
c. Run AI models on the most recent image

2. Crop images for faster processing of areas of interest
3. Show the location of defects with bounding boxes (as determined by AI models)
4. Allow inspector to modify bounding boxes
5. Store images with embedded bounding boxes in a repository
6. Provide the details of background processes to the inspector

Below image shows the main screen of the GUI and the sections that comprise it.

P a g e | 10

Figure 3: GUI Main Screen

GUI Sections and Descriptions:

Image Display
o Displays still images
o Allows for modification of defect locations after defect detection processes are run

Processes Output
o Describes the steps and output of back-end processing to assist inspector

Camera Controls
o Starts visual or thermal live streaming
o Captures visual or thermal still images

Run Processes
o Initiates defect detection processes
o The number of defect types can be selected

Processing Results
o Switches between results of defect processes (if multiple are run)

Image View
o Switches between different image types (often used before processes are run). The

image types include Visual, Thermal, and Cropped Visual.
Defect Data Post-Processing

o Finalizes boxes from defect processes before storage to repository
o Stores image(s) to repository
o Trains defect processing models to improve accuracy

P a g e | 11

The cropping function allows for a smaller area of interest within an image to go through

the selected AI model(s). This will run through the models faster than the whole image,

while also providing a result in the repository focused on the defect alone.

Figure 4: GUI Crop Function

Figure 5 shows the repository interface of the GUI. The bounding boxes that were selected

by the inspector are embedded in the image. The repository functionality allows for quick

and easy storage of the captured images during an imaging mission. This is crucial so that

the inspector has an archive of all the areas that were deemed as potentially containing a

defect. During a mission, the inspector can quickly capture an image of a target area with

potential defect locations, store it in a repository, then move to the next location. After the

mission, the inspector can review the repository to determine the next maintenance steps

to take.

P a g e | 12

Figure 5: GUI Repository

3.1.1 Interactive Defect Identification on GUI

The Interactive GUI functionality works the same for both Corrosion and Crack defects.

The only difference is that the Corrosion defects are identified by blue boxes, while Crack

defects are identified by red boxes. When the Defect Detection process for Corrosion

and/or Crack are run on an image, the Interactive GUI divides the image into an 8 x 4 grid

of sub-images to prepare for processing. When the processing is complete, the Interactive

GUI places a box around each sub-image that contains the defect(s). The box is not centered

around the defect, meaning the defect could be anywhere within the box. If the inspector

disagrees with the identified defect locations, they can change the selected boxes before

storing the image in the repository. They can de-select a sub-image that they believe does

not contain a defect, and the box will be removed. Also, they can select a sub -image that

they believe does contain a defect that was not identified by the process. This process of

de-selecting or selecting is as simple as clicking on the location within the GUI.

The Interactive GUI for Bolt Issues works differently than Crack and Corrosion. When the

Defect Detection process for Bolt Issues is run on the current image, the Interactive GUI

identifies the exact location of each Bolt Issue, without having to divide the image into

sub-images. Yellow bounding boxes are drawn around each identified defect, with numbers

listed on the top left corner of each box. The size of the boxes var ies, depending on the

P a g e | 13

sizes of the defective areas. When the processing is complete, the bounding boxes appear

on the screen, superimposed on the image. The inspector has the option to remove any of

the bounding boxes placed by the model. Then, the inspector can click and drag anywhere

within the displayed image to place a new bounding box, if they determine a bolt defect is

in that location. The boxes can be any size and location, as long as it is within the image.

The bounding boxes changed by the operator are saved when toggling between different

image views. This allows the operator to evaluate multiple defect types within one image

and modify multiple sets of defect locations before saving to the repository.

3.1.2 Back-end GUI Processes

There were many challenges in designing the GUI to include user-friendly features. Many

of these were due to limitations with C# as a programing language. For one, the main C#

form needs the images from the payload to be displayed with bounding boxes overlaid on

top to identify defects. To accomplish this with the most optimal processing speed, the

image is redrawn into the Image Display every time a bounding box is removed. To

elaborate further, the bounding boxes shown in the Image Display area are not se parate

elements of the GUI, but rather static shapes drawn onto the image. This method was

methods of either resaving the image every time or creating new GUI elements that are

placed in front of the image.

There are many files within the folder structure of the GUI that are python or batch files to

support the GUI. The GUI calls these files multiple times during normal operation. These

files are mainly used for interaction with the payload or for image modif ication. The reason

that these are external to the GUI is due to limitations of the C# language for inter -agent

communication and image processing.

To ensure the inspector interaction with the boxes is saved when switching from one defect

type to another, different approaches are taken for different defects. For Crack and

Corrosion, array is 3

dimensional, with the first two dimensions corresponding to the x and y coordinates of the

box, respectively. The 3rd dimension is simply used to switch between Crack and

Corrosion. To preserve the bounding boxes used for Bolt defects, the box locations and

size is saved in a text file in the project folder.

P a g e | 14

3.2 AI model Architecture

3.2.1 Corrosion detection model

The development of an Artificial Intelligence model for detecting corrosion required

several steps. Overall data generation, data augmentation, data annotation, model training,

and testing are the basic phases of the model development. AlexNet, the robust image

classification model, was used for detecting corrosion. The architecture of AlexNet has

been proposed by Krizhevsky [29] which has 8 main layers. There are 25 sublayers in these

8 main layers which are trainable. This is a pre-trained deep convolution neural network

on imageNet dataset. Figure 6 depicts the backbone of the AlexNet in terms of five

convolution layers(C1-C5), seven layers (ReLU1-ReLU7) with rectified linear unit(ReLU)

to solve the issue with non-linearity, two normalization layers (Norm1-Norm2), three fully

connectedlayers ((FC1-FC3). Among these three fully connected layers the last layer has

been modified so that the model can work as binary classifier with the help of sigmoid

function at the last layer.

Figure 6: The architecture of AlexNet [29]

Two types of sensors have been used for data generation. The Specification of both the

sensors are mentioned in Table 3. The data generation process is completed in two phases;

mobile phone has been used in the first phase and UAS camera later.

Table 3: Camera Comparison

Type of the device Samsung Galaxy M30 UAS camera

Resolution 13 Megapixels 7860 x 4320 Megapixels

Aperture size f-stop; f/1.9. f-stop; f/2.8 - f/11

P a g e | 15

Using images from different sensors in model development helped to test and rectify the

existing signal posts with an average height of 6.7m(22ft) and a cantilever arm length of

6.1-6.7m(20-22ft) have been collected by the research team by using the mobile phone

from 9.53 am to 11.53 am on May 17, 2021. The sizes of the images were 2311 pixels X

4128 pixels [30]. In the second phase, approximately 200 images are collected by UAS

camera from the in-service ancillary structures.

Data augmentation library such as albumentation from python has been applied on the most

representative images with corrosion to augment the data set. The model development

starts with 4000 images. At present, it is augmented to 9257 images after testing model

performances for different images (Figure 7).

Figure 7: Performance evaluation of model by varying the number of images

TPR (true positive rate) represents the percentage of the correctly detected corrosion

images. Similarly, TNR (true negative rate) depicts how many non-corroded images have

been detected accurately. Higher value of both TPR and TNR value work as indication of

less false detection. All these parameters were determined considering the training labels

as ground truth.

After data augmentation all the images have been labelled with corrosion (WC) and without

corrosion (WOC) by the research team. The total number of images with corrosion is 4600

P a g e | 16

and 4657 for without corrosion. To confirm the robustness of the model the without

corrosion images consists of diverse background such as cars, sky, trees including the

images from the sound part of the steel structures.

The model has been trained with 9254 images and tested with the images collected by the

research team from the internet and the combined dataset comprises images of different

sensors.

3.2.2 Crack detection model

The dataset utilized in this study for AlexNet consisted of 250 images sourced from prior

research studies [31,32], in addition to an extra 30 images obtained from real-world

ancillary structures. This dataset was assembled to encompass images from various

sections of the structures for a comprehensive examination of cracks. It was split into two

annotated sets based on the types of detection performed by deep convolutional neural

networks (DCNN). The AlexNet annotated dataset comprised 200 images displaying

fatigue cracks and 250 sub-images without cracks, all with dimensions of 256 by 256

pixels. To augment the training dataset, various data enhancement methods were applied,

including adjustments to color, brightness, and crack orientation, resulting in an expanded

dataset of 1400 sub-images. Furthermore, realistic images of fatigue cracks were overlaid

onto images of undamaged and in-service ancillary structures, boosting the dataset's size

to 1500 sub-images. To enhance subsets related to cracks, a combination of random under-

sampling and data augmentation was used.

To create a more diverse training dataset, some images of ancillary structures, often coated

in silver or blue anticorrosion paint alongside red, had their colors modified to silver or

blue. Additionally, since corrosion is a frequent occurrence in steel s tructures, the colors

of select images were altered to mimic corroded plates or galvanized steel plates. This color

transformation was carried out using methods outlined in Reference [33], wherein the color

of galvanized steel plates, both corroded and intact, served as the target color. Images from

in-field structures were considered input objects, and the process described in Reference

[34] was employed to adjust the color of raw images to match the color of images in the

target dataset, thus enlarging the training set. Figure. 8 illustrates the original images, target

images, and the outcomes of the color transformation algorithm.

P a g e | 17

a) b) c)

d) e) f)

Figure 8: Data augmentation.

a) raw images, b) raw image with corrosion c) fused image, d) raw images, e) galvanized steel,
f) fused images

Acquiring images of structures with cracks can be challenging as they are often promptly

repaired to prevent structural risks. To address this, a limited number of images depicting

ancillary structures with and without fatigue cracks were blended into a color algorithm.

This multi-faceted data augmentation approach was employed to generate lifelike images

of ancillary structures with fatigue cracks, further expanding the dataset to 1500 sub-

images. Figure 9 illustrates the overlaying of images with and without cracks to create

authentic images of ancillary structures with fatigue cracks [33].

Figure 9: Examples of using a superimposed approach to augment data, a) Original image with
a crack, b) Original image without crack, c) a superimposed crack, d) raw image from Reference

P a g e | 18

[32], e) Original image without crack, f) superimposed crack g) Original image from Reference
[34], h) Original image 31].

Rotation was employed as a data augmentation technique to boost the size of the crack

dataset, a method previously demonstrated to be effective in research. Images were

uniformly rotated at 45° and 135° angles, as depicted in Figure 10, to augment the training

set.

Figure 10: Data augmentation, a) raw image, b) rotated by 45 compared to original image, c)
rotated by 90 compared to original image [1].

It is the most challenging part of crack detection to create a dataset based on limited images

from steel structures and run AlexNet as a deep learning algorithm in real time to detect

cracks as defects. The accuracy rate of the model can be improved by adding more data

from real structures since only two ancillary structures with fatigue crack (HM 0029-

138.442 and HM 0029-137.911) exhibited during inspection of this project. We have

already taken images of these two structures and have added them to the main datasets.

However, the number of images from real structures should increase to have better defect

was used to test algorithms.

These images were divided into 1,100 smaller segments. Subsequently, trained Alex Net,

also referred to as the Crack Model, was applied to categorize these images into two distinct

categories (sub images with cracks and sub images without cracks).

The results generated by AlexNet models were recorded in separate Excel files for crack

and corrosion, organized according to image names and their corresponding labels.

P a g e | 19

Figure 11: AlexNet architecture in paper [5].

3.2.3 Bolt Detection Method

The dataset comprises approximately 1,000 images depicting absent bolts or nuts in

ancillary structures within laboratory settings across diverse locations, including North

Dakota and Baltimore in the USA, as well as Istanbul in Turkey.

Faster R-CNN (FRCNN) is a variant of Region-Based Convolutional Neural Networks

(RCNN), belonging to the family of machine learning models designed for object detection

in images. The RCNN approach involved producing a series of bounding boxes as output,

each encapsulating instances of missing bolts as objects. The RCNN model was

specifically trained to identify and localize defective bolts within these bounding boxes

during testing. Implementation of the model was carried out using Python , where the

defected bolts were placed within the bounding boxes, and predictions for bolt or nut

defects in the test set were made.

P a g e | 20

Figure 12: Bolt Detection Method

3.3 Data Annotation

Bounding boxes were used to annotate missing bolt area. Figure 13 displays an example of

annotated missing bolts with bounding box (shown a rectangular shape)

Figure 13: Structure with a missing bolt, shown by bonding box annotation

P a g e | 21

3.4 Data Augmentation

Our objective was to enhance the resilience of object detection algorithms through the

implementation of data augmentation techniques. Various augmentation methods,

including noise addition, color adjustments, blurring, and a diverse set of augmentations

were employed to augment the dataset's image sizes. This approach aimed not only to

improve the model's ability to detect objects but also to diversify the dataset by introducing

variations through augmentation techniques.

Figure 14 shows the performance for some images in the testing set. This image is trickier

compared to other image since the color of bolt is black and different from trainset

(Figure14c), blur image (Figure14b), hidden by structure (Figure14f), and not visible

enough (Figure 14b).

 (a) (b) (c)

 (d) (e) (f)

Figure 14: FRCNN result. a) multiple missing bolt output, b) multiple loosen bolt output, c)
black loosen bolt, d) missing bolt, e) loosen nut, f) loosened nut.

P a g e | 22

4 Payload System Design

The System Block Diagram is shown in Figure 15. The left side of the diagram is for the

hardware/software located on the ground, while the right side is for the hardware/software

located in the air, on the UAV.

Figure 15: System Block Diagram

The payload described in this document works separately from the stock UAV hardware

and software. The only interaction is the control of the gimbal that holds the payload should

be commanded by the UAV flight controller. The method for accomplishing this varies,

depending on the UAV controller, but usually is a simple setting in the software provided

by the flight controller. Alternatively, the gimbal can be configured to be controlled by the

Ground PC, using QGroundControl software on the laptop establishing a link to the gimbal

through the Jetson running MavProxy software. In this case, the Jetson receives gimbal

commands from the laptop and transfers the commands to the gimbal.

runs the AI models to detect defects within

the captured images on command. The data and commands between the payload computer

and Ground PC are transmitted over a Wi-Fi network established by a travel router (IEEE

802.11ac).

P a g e | 23

A Ground PC is used to run the GUI and store images in a repository. The Dell Latitude

5430 was selected, as it is rugged to survive any moisture or physical stress from operating

outdoors. The has been able to effectively run

the GUI with minimal latency or crashing.

4.1 Payload Equipment

Table 4 below lists the equipment used in the payload and the Ground Station. The features

of the equipment as well as the purpose that each piece fulfills is included.

Table 4: Payload Equipment

Type Name Features Purpose

Laptop Dell
Latitude
5430

Semi-rugged with enhanced
battery life
Intel Core i5 1145G7 /2.6 GHz
1 TB SSD NVMe Class 40
16GB, 2x8GB, 3200 MHz DDR4
RAM

It runs the Smart Defection
Detection Interface
The router is powered using
an USB connected to the
laptop
Its hosts the AI training
processes for defect
detections

Microcomputer Nvidia
Jetson NX

CUDA-enabled parallel
computing capability
384 NVIDIA CUDA® Cores, 48
Tensor Cores, 6 Carmel ARM
CPUs
Delivers up to 14 TOPs for AI
applica tions in 10W power
utilization

Its host the AI test processes
for defect detections
The two sensors are
controlled using this
system-on-module
Establishes a connectivity
with the laptop when both in
same network

Visual Camera
with Lens

Arducam
477P HQ
Camera
Board

Lens:

Arducam

C-Mount

Lens

Maximum still resolution: 4056 ×
3040
30fps@Full 12.3MP
Supports NVIDIA Argus Camera
plugin for H264 encoding, JPEG
snapshots
C-Mount Lens:
16mm Focal Length
Manual Focus and Aperture
Adjustment, F1.4 to F16

Provides live visual camera
stream
Captures visual image for
AI processing
Lens wide aperture allows
for very deep depth of field

Thermal Sensor Teledyne
FLIR
Boson

Resolution: 640x512
12 µm pixel pitch VOx
microbolometer
Tempera ture rating: -40 °C to
+80 °C
Low power consumption around
500 mW

Provides live thermal
camera stream
Captures thermal image

P a g e | 24

For rugged construction

Gimbal Gremsy
Mio

Carries payload up to 400g
Lightweight

Allows stabilization of the sensors to
prevent motion blur

Router GL.iNet
GL-AR750

AC VPN Travel Router
300Mbps(2.4GHz) +
433Mbps(5GHz) Wi-Fi

Establishes a cryptographic Wi-Fi
network connection between the
microcomputer and the laptop

Battery HRB 4S
Lipo
Battery

It is needed for powering up the
microcomputer and the gimbal
during flight

Battery Charger Hobby Fans
B6 Balance
Charger

For charging the batteries in
balanced charged mode for short-
circuit, overcharge, overcurrent and
overheat protection.

4.2 Power Consumption

Table 5 lists the power consumption of the electronic devices located on the payload. Jetson

power consumption was captured as the worst-case during operation.

Table 5: Power Consumption

Component Max Power Consumption

(W)

Voltage Range

Jetson 12 9-19

Visual Camera 1 (from USB)

Thermal Camera 0.5 (from USB)

Gimbal 8.4 14-52

Total 21.9

The payload voltage ranges allowed for either a 14.8V or 18.5V LiPo battery. For

reference, each LiPo battery cell operates at 3.7V, so adding LiPo cells in series allows for

voltage values at multiples of 3.7V. Several batteries were assessed based on weight,

capacity, and voltage. Table 6 lists these parameters, and a ranking was provided based on

the most ideal parameters. Ultimately, a low weight battery was selected that will still allow

for 121 minutes of operation. This time is most often beyond the amount of time that most

UAVs can fly, so this operating time is acceptable.

Table 6: Battery Comparison

P a g e | 25

Voltage Capacity

(mAh)

Minutes of

Operation

Weight (g) Price Final Rank

14.8 3000 121.6 297 $32 1

18.5 4000 202.7 495 $54 2

14.8 4000 162.2 403 $45 3

14.8 5200 210.8 470 $42 4

14.8 3300 133.8 318 $36 5

14.8 5000 202.7 492 $54 6

18.5 5000 253.4 608 $72 7

4.3 Custom Modeled Payload Fastening System

To carry the required payload on the DJI Inspire 2 Drone, attachments needed to be

fabricated to safely fasten the payload to the drone and not hinder operation. To do this,

prototypes were designed and modeled on AutoCAD, imported into GrabCAD Print for

formatting, then transferred via USB drive to the StrataSys F370 composite 3D printer to

be printed using ABS M30 material. Details on the F370 and ABS M30 material properties

are included in the appendix.

One of the prototypes housed the cameras. It was designed to be fully enclosed and to

minimize camera movement and foreign material contamination while the drone is

operating. A classic half-hinged clipping design was employed to be able to accomplish

this. Additional attributes of the design include cord accessibility for both cameras while

the box is still closed and multiple mounting locations to mount the box to the gimbal.

Below are images of this design. Annotated drawings are included in Appendix A, Section

2.

P a g e | 26

Figure 16: Prototype Housing

Figure 17: Prototype Housing Inside

Another prototype helped fasten the power supply and onboard computer. The goal of this

design was to allow plenty of air flow so the power supply and computer would not

overheat. Additionally, it was important to make sure this design did not interfere wi th any

Unfortunately, the detection

system for under the drone is partially impeded by the design due to limitations in cable

reach, overall drone stability (or affecting the Center of Gravity too severely), and the

P a g e | 27

awkward size and geometry of the Jetson and power supply . A three-piece mounting

bracket was designed to be able to fasten the Jetson/Power supply housing to the drone.

They were designed to maximize stability with the limited cross section area available due

 Figure 18 is an image of the designs. Annotated drawings are

included in Appendix A, Section 2.

Figure 18: Gimbal Adapter 1

Finally, an adapter was also needed to be able to attach the gimbal to the drone since the

gimbal used was not designed by DJI, thus preventing the proper attachment interface

required. To accomplish this, 5 pieces were required. Two of them were the main gimbal

housing that is meant to hold the gimbal in place on the drone while allowing free

movement of the gimbal and access to each of the required ports on the gimbal. The other

three pieces were designed to mount the gimbal and gimbal housing to the damper that is

on the drone. The goal was to make this as stable as possible while still allowing

functionality of the damper to provide further stabilization to the cameras while the d rone

is in flight. Below is an image of the pieces for the design. Annotated drawings are

included in Appendix A, Section 2.

P a g e | 28

Figure 19: Gimbal Adapter 2

After inserting all components into their respective housing and attaching them to the drone

with their respective brackets, the final full design is assembled (Figure 20).

Figure 20: UAV Integration

P a g e | 29

4.4 Validation

4.4.1 System Validation in Controlled Environment

 A demo filed test has been simulated at the Civil Engineering High Bay facility, University

of North Dakota. A corroded steel plate has been clamped on a column to replicate the

scenario in the field. In addition to this, bolts were also attached to the column without nuts

to simulate the defective bolts in the real steel structures. The lighting condition was not as

natural as the sunlight, and this might lead the model to misdetection in case of corrosion.

The inspection demo with the results is reported here in Figure 21-22. One the other hand,

the low lighting condition made missing bolt detection challenging without use of AI model

(Figure 22b).

(a) (b)
Figure 21 (a)& (b): Pre-flight condition checking at Lab

(a) (b)

 Figure 22 (a)& (b): Loosen Bolt and Corrosion detection by the AI models

P a g e | 30

4.4.2 System Validation with Field Test

The outdoor defect detection mission with the payload mounted on UAS has been

completed. In this section, an example of model performance in defect detection was

reported for the corrosion model only, since the inspected pole did not have any fatigue

crack or bolt issues. The detection results are reported in this section (Figures 23-27). Out

of 32 split sub-images, 8 truly have corrosion. The corrosion model correctly detected 5

sub images as corroded but falsely indicated 3 images as uncorroded. The reason for this

misdetection could be the ratio of corroded (approximately 20%) and background

(approximately 80%). The inspector was able to correct the miss detections using GUI.

This demonstrated the successful interactive functionality of the GUI, which allowed the

inspector to correct the model detection output.

The time required for the processing functions of the system is mentioned in Table 7.

The battery voltages were taken before and after the test. Because the voltage of a LiPo

battery needs to be above 3.2V per cell, the operator must ensure that the voltage does not

drop below that value. The payload ran at approximately full load for about 15 minutes and

depleted 0.22v. Therefore, the payload depleted the battery at about 14.7mV per minute.

Assuming a starting charge of 4.1v and an acceptable margin of 0.1v about 3.2v, the battery

should be limited to only running the payload long enough to drop 0.8v. This equates to

about 54 minutes, but due to battery depletion over time and adding more margin, this limit

should be reduced to 45 minutes. Because it takes setup time before and after the test, the

45 minutes.

Figure 23:Inspection Location, 3526 Gateway Drive, Grand Forks, ND

P a g e | 31

Figure 24: (a) &(b) Pre-flight condition checking

(c) (d)

Figure 25: (c) &(d) Inspection team during the outdoor flight

 (a) (b)

P a g e | 32

 (a)

(b)

Figure 26: (a) Corrosion detection results (b) confusion matrix

 (a) (b)

Figure 27: Saved image in repository after completing the inspection (a) Corrosion (b) Crack

& defective bolt

Table 7: Flight Datasheet

Predicted
TRUE FALSE

Actual
TRUE 5 3
FALSE 3 21

TP FP

P a g e | 33

Mission Phase Parameter Measurement
Pre-Flight Payload Battery Voltage 4.09 v per cell

Flight Visual Image Capture Process Time 9 second (Approximate)

Flight Corrosion Process Time 23.846 seconds

Flight Crack Process Time 26.185 seconds

Flight Bolt Process Time 31.749 seconds

Flight All process 83 seconds

Post-Flight Payload Battery Voltage 3.87 v per cell

5. Limitation and future work

Although the developed payload-equipped UAS improves on the current inspection

system, it has some limitations. The UAS can be operated only when the environmental

conditions such as position of cloud, presence of wind condition etc. satisfy the FAA

recommendation. This requirement may hinder the inspection in North Dakota where the

environmental conditions change abruptly.

 All the AI models are developed with enough datasets. However, the datasets were not

diversified as many defective poles were already replaced or over-coated. For example, the

corrosion model was developed with the images collected from Grand Forks and Fargo.

Most of the inspected poles painted yellow in color. So, 90% of images with corrosion are

with yellow color structure. Training of the model on the specific color may be one of

causes of misdetection. However, the provision of retraining will give the opportunity to

update the model to be more robust with new annotated data from the field.

The processing times reported for the AI models were longer than expected. This is mostly

due to the remote processing of these models occurring at the microcomputer. This could

be mitigated by the operator limiting the number of areas of interest on which models are

run for inspection. Also, the operator may consider moving to a new area of interest while

the previous area is being evaluated by the AI models. The live streaming shown on the

GUI can occur while the models are running. Another limitation of the payload is that the

housing takes time to assemble and disassemble. A more robust design may be considered

P a g e | 34

if these times are an issue for the inspection. Future work could improve the processing

time by re-architecting the system to run the models on the laptop. If this would occur, a

laptop with greater processing power would be more optimal.

P a g e | 35

References

1 Khayatazad, M., De Pue, L., & De Waele, W. (2020). Detection of corrosion on steel structures using
automated image processing. Developments in the Built Environment, 3, 100022

2 Garlich, M. J., & Thorkildsen, E. T. (2005). Guidelines for the installation, inspection, maintenance
and repair of structural supports for highway signs, luminaires, and traffic signals (No. FHWA-NHI-
05-036). United States. Federal Highway Administration.

3 Hoang, N. D. (2020). Image processing-based pitting corrosion detection using metaheuristic
optimized multilevel image thresholding and machine-learning approaches. Mathematical Problems
in Engineering, 2020.

4 Tran, D. Q., Kim, J. W., Tola, K. D., Kim, W., & Park, S. (2020). Artificial intelligence-based bolt
loosening diagnosis using deep learning algorithms for laser ultrasonic wave propagation
data. Sensors, 20(18), 5329.

5 Hoskere, V., Narazaki, Y., Hoang, T., & Spencer Jr, B. (2018). Vision-based structural inspection
using multiscale deep convolutional neural networks. arXiv preprint arXiv:1805.01055.

6 Wells, J., & Lovelace, B. (2018). Improving the quality of bridge inspections using unmanned aircraft
systems (UAS) (No. MN/RC 2018-26).

7 Li, Y., Kontsos, A., & Bartoli, I. (2019). Automated rust-defect detection of a steel bridge using aerial
multispectral imagery. Journal of Infrastructure Systems, 25(2), 04019014.

8 Bondada, V., Pratihar, D. K., & Kumar, C. S. (2018). Detection and quantitative assessment of
corrosion on pipelines through image analysis. Procedia Computer Science, 133, 804-811.

9 Hoang, N. D. (2020). Image processing-based pitting corrosion detection using metaheuristic
optimized multilevel image thresholding and machine-learning approaches. Mathematical
Problems in Engineering, 2020.

10 Naik, D. L., Sajid, H. U., Kiran, R., & Chen, G. (2020). Detection of Corrosion-Indicating Oxidation
Product Colors in Steel Bridges under Varying Illuminations, Shadows, and Wetting
Conditions. Metals, 10(11), 1439.

11 Lee, S., Chang, L. M., & Skibniewski, M. (2006). Automated recognition of surface defects using
digital color image processing. Automation in Construction, 15(4), 540-549.

12 Lin, J. J., Ibrahim, A., Sarwade, S., & Golparvar-Fard, M. (2021). Bridge Inspection with Aerial
Robots: Automating the Entire Pipeline of Visual Data Capture, 3D Mapping, Defect Detection,
Analysis, and Reporting. Journal of Computing in Civil Engineering, 35(2), 04020064.

13 Chen, Q., Wen, X., Lu, S., & Sun, D. (2019, August). Corrosion Detection for Large Steel
Structure base on UAV Integrated with Image Processing System. In IOP Conference Series:
Materials Science and Engineering (Vol. 608, No. 1, p. 012020). IOP Publishing.

14 Na, W. S., & Baek, J. (2017). Impedance-based non-destructive testing method combined with
unmanned aerial vehicle for structural health monitoring of civil infrastructures. Applied
Sciences, 7(1), 15.

15 Jahanshahi, M. R., Masri, S. F., Padgett, C. W., & Sukhatme, G. S. (2013). An innovative methodology
for detection and quantification of cracks through incorporation of depth perception. Machine vision
and applications, 24(2), 227-241.

16 Lim, R. S., La, H. M., & Sheng, W. (2014). A robotic crack inspection and mapping system for bridge
deck maintenance. IEEE Transactions on Automation Science and Engineering , 11(2), 367-378.

17 Dorafshan, Sattar, Robert J. Thomas, and Marc Maguire. "Comparison of deep convolutional
neural networks and edge detectors for image-based crack detection in
concrete." Construction and Building Materials 186 (2018): 1031-1045.

P a g e | 36

18 Sakagami, T. (2015). Remote nondestructive evaluation technique using infrared thermography for
fatigue cracks in steel bridges. Fatigue & Fracture of Engineering Materials & Structures, 38(7), 755-
779.

19
detection using convolutional neural networks."
Engineering 32, no. 5 (2017): 361-378.

20 Huynh, T. C., Nguyen, B. P., Pradhan, A. M. S., Pham, Q. Q., Nguyen, N. T., Nguyen, M. N., ... &
Bui, T. Q. (2021). Vision-based inspection of bolted joints: Field evaluation on a historical truss bridge
in Vietnam. Evaluation, 55, 77.

21 Tran, D. Q., Kim, J. W., Tola, K. D., Kim, W., & Park, S. (2020). Artificial intelligence-based
bolt loosening diagnosis using deep learning algorithms for laser ultrasonic wave propagation
data. Sensors, 20(18), 5329.

22 Aghaei, M., Grimaccia, F., Gonano, C. A., & Leva, S. (2015). Innovative automated control system
for PV fields inspection and remote control. IEEE Transactions on Industrial Electronics, 62(11),
7287-7296.

23 Eschmann, C., Kuo, C. M., Kuo, C. H., & Boller, C. (2012). Unmanned aircraft systems for remote
building inspection and monitoring.

24 Jiang, S., Zhang, J (2019). Real-time crack assessment using deep neural networks with wall-climbing
unmanned aerial system. Computer-Aided Civil and Infrastructure Engineering .

25 Ali, R., Kang, D., Sug, G., Cha, Y (2021). Real-time multiple damage mapping using autonomous
UAV and deep faster region-based neural networks for GPS-denied structures. Automation in
Construction Volume 130.

26 Horstrand, P., Guerra, R., Rodríguez, A., Díaz, M., López, S., & López, J. F. (2019). A UAV platform
based on a hyperspectral sensor for image capturing and on-board processing. IEEE Access, 7, 66919-
66938.

27 Lin, C. E., Li, C. R., & Lai, Y. H. (2012, September). UAS cloud surveillance system. In 2012 41st
International Conference on Parallel Processing Workshops (pp. 173-178). IEEE.

28 Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., & Ziparo, V. A. (2007).
Towards heterogeneous robot teams for disaster mitigation: Results and performance metrics from
robocup rescue. Journal of Field Robotics, 24 -967.

29 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural information processing systems 25
(2012).

30 Das, Amrita, Eberechi Ichi, and Sattar Dorafshan. "Image-Based Corrosion Detection in
Ancillary Structures." Infrastructures 8, no. 4 (2023): 66.

31 Jafari, F., Dorafshan, S., & Kaabouch, N. (2023, June). Segmentation of fatigue cracks in
ancillary steel structures using deep learning convolutional neural networks. In 2023
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp.
872-877). IEEE.

32 IPC-SHM The 1st International Project Competition for Structural Health Monitoring (IPC-
SHM 2020). 2020. Available online: http://www.schm.org.cn/#/IPC-SHM (accessed on 30
August 2020).

33 Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern
recognition. Neural networks, 1(2), 119-130.

34 Reinhard, Erik, et al. "Color transfer between images." IEEE Computer graphics and
applications 21.5 (2001): 34-41.

35 Heichel, J., Mitra, R., Jafari, F., Das, A., Dorafshan, S., & Kaabouch, N. (2023, June). A
System for Real-Time Display and Interactive Training of Predictive Structural Defect

P a g e | 37

Models Deployed on UAV. In 2023 International Conference on Unmanned Aircraft Systems
(ICUAS) (pp. 1221-1225). IEEE.

P a g e | 38

5 User Guide

5.1 Introduction

Before beginning this User Guide, it is recommended to understand the hardware and

software components and their integration. This section also will guide through the initial

steps to get started with the smart inspection process.

5.2 Hardware Components

Table 8: Hardware Components

Type Name Features Purpose
Laptop Dell Latitude 5430 Semi-rugged with

enhanced battery life
Intel Core i5 1145G7
/2.6 GHz
1 TB SSD NVMe Class
40
16GB, 2x8GB, 3200
MHz DDR4 RAM

-Runs the GUI for
Smart Defect Detection
-Powers the router
-Hosts the AI training
processes for defect
detections

Microcomputer Nvidia Jetson NX CUDA-enabled parallel
computing capability
384 NVIDIA CUDA®
Cores, 48 Tensor Cores,
6 Carmel ARM CPUs
Delivers up to 14 TOPs
for AI applications in
10W power utilization

-Hosts AI processes for
defect detection
-Controls the payload
cameras
-Establishes
connectivity with the
laptop when both in
same network

Visual Camera with
Lens

Arducam 477P HQ
Camera Board

Lens: Arducam C-

Mount Lens

Maximum still
resolution: 4056 × 3040
30fps@Full 12.3MP
Supports NVIDIA
Argus Camera plugin
for H264 encoding,
JPEG snapshots
C-Mount Lens:
16mm Focal Length
Manual Focus and
Aperture Adjustment,
F1.4 to F16

-Provides live visual
camera stream
-Captures visual image
for AI processing
-Lens wide aperture
allows for very deep
depth of field

Thermal Camera Teledyne FLIR Boson Resolution: 640x512
12 µm pixel pitch VOx
microbolometer
Temperature rating: -40
°C to +80 °C

-Provides live thermal
camera stream
-Captures thermal
image

P a g e | 39

Low power
consumption around
500 mW
For rugged construction

Gimbal Gremsy Mio Payload upto 400g
Lightweight

-Allows stabilization of
the sensors to prevent
motion blur

Router GL.iNet GL-AR750 AC VPN Travel Router
300Mbps(2.4GHz) +
433Mbps(5GHz) Wi-Fi

-Establishes a
cryptographic Wi-Fi
network connection
between the
microcomputer and the
laptop

Battery HRB 4S Lipo Battery -Powers microcomputer
and the gimbal during
flight

Battery Charger Hobby Fans B6
Balance Charger

-Charges the batteries in
balanced charged mode
for short-circuit,
overcharge, overcurrent
and overheat protection.

Figure 29 shows the hardware components and how they are interconnected. Please refer to

the respective hardware documentation for detailed system requirements and compatibility

information.

Figure 28: System Connections

P a g e | 40

5.3 Software Components

Table 9 lists the software components used on the laptop and microcomputer. Please refer

to the respective software documentation for detailed system requirements and

compatibility information.

Table 9: Software Components

Segment Name Version Usage

Laptop

GStreamer 1.0
GStreamer 1.0
(Development Files)

1.20.2 -Pipeline-based
multimedia framework
-Used for live video
streaming and image
transfer

gTuneDesktop 1.4.9.1 -Configures the gimbal
Python 3.9.7 -Controls peripheral

features of the GUI
Visual Studio
Community 2022

17.3.5 -Platform on which the
GUI is developed

C# 10.0 -Core code of the GUI

.Net Framework 4.7.2 -Framework on which
the GUI runs

Microcomputer Python n/a -Core code of the

Jetson

5.4 System Architecture

The System Block Diagram is shown below. The left side of the diagram is for the

hardware/software located on the ground, while the right side is for the hardware/software

located in the air, on the UAV.

P a g e | 41

Table 10: System Block Diagram

The payload described in this document works separately from the stock UAV hardware

and software. The only interaction is the control of the gimbal that holds the payload

should be commanded by the UAV flight controller. The method for accomplishing this

varies, depending on the UAV controller, but usually is a simple setting in the software

provided by the flight controller.

within the captured images on command. The data and commands between the payload

computer and Ground PC are transmitted over a Wi-Fi network established by a travel

router (IEEE 802.11ac).

A Ground PC is used to run the GUI and store images in a repository. The PC was selected

to be rugged to survive any moisture or physical stress from operating outdoors.

5.5 Startup Instructions

Before initiating the inspection, it is crucial to follow a series of steps to ensure a seamless

and successful operation. These steps will help set up the necessary connections and

configurations for controlling and monitoring the drone's payload, which is equipped with

advanced defect detection capabilities.

P a g e | 42

Power on the laptop and make sure it remains on a stable surface to ensure smooth
operation.
Establish a physical connection between the laptop and the router to enable data transfer.
Allow the router to activate the 5G WIFI network (green light should be on), which is
essential for seamless communication between devices.

Connect the laptop to the 'NDDOT_ROUTER_5G' network, providing internet access for
further actions.

Figure 29: Wi-Fi network

Ensure the UAS has met all the pre- and post-flight requirements (Follow general operation
and safety guidelines recommended by FAA).
Attach the gimbal, which is the mechanism responsible for stabilizing and controlling the
payload, to the drone securely.
Power up both the microcomputer and the gimbal using the designated payload batteries to
activate their functionalities.
Once the drone is airborne and stable, launch the gTuneDesktop app on the laptop.
Verify gimbal connectivity and controls using the app controls.
Open the Smart Defect Detection Interface app (GUI) on the laptop, specifically designed
for controlling the payload's defect detection capabilities.

P a g e | 43

Figure 30: GUI Launch Page

Navigate to the Payload Control page within the app's interface to access the relevant
controls

Figure 31: Payload Control Page

Click on the 'Connection Check' button within the Payload Control page. A successful ping would
indicate that the connection between the laptop and the payload is established and ready for
inspection.

Figure 32: Payload Ping

5.6 Operation Instruction

P a g e | 44

5.6.1 Functionalities of the GUI

5.6.1.1 Initial Launch page

This page is the initial launch page to the GUI. The initial launch page gives access to the

payload control application and desktop application.

Figure 33: GUI Launch Page

Table 11: GUI Launch Page Description

Button Name Button Functionality

Payload App -Launches the Payload Control application for defect
detection

Train Models -Launches the Train Models application

Close Program -Closes the GUI application

5.6.1.2 Payload Control Page

The Payload Control page functions as a primary hub, giving access to all the tools and

needes to successfully control the payload for detecting defects in the target structure. The

purpose of this section of the user guide is to give an understanding of the Payload Control

P a g e | 45

capabilities. Section 5.6.1.6 will guide through the step-by-step process for using the

Payload Control features effectively during the field inspections.

Figure 34: Payload Control Page Details

The Payload Control page consists of the following sections:

 Camera Controls:
This section gives access to use the live streaming and image capture feature using the

visual and thermal camera.

 Run Processes:
This section can run the preferred AI model or models for detecting various defects. With

a focus on enhancing safety and reliability, the available AI models cater specifically to the

identification of corrosion, cracks, and bolt issues. The user has the flexibility to select any

one AI process or a combination of processes. This gives the ability to modify the fault

detection strategy to fit the particular traits of the area of ancillary structure under study.

Utilize Run Process button drop-down flexible option to tailor the defect detection

procedure using the AI process or processes that work best for the mission. The Run

Process button has the following drop-down options:

P a g e | 46

Table 12: Run Process Options

Tick Button Name Tick Button Functionality
All Defects -Runs all the AI processes

Corrosion -Runs the Al process for detecting corrosion defects

Crack -Runs the Al process for detecting crack defects
Bolt -Runs the Al process for detecting bolt issue defects

The user can choose any one or combination of AI processes they wish to run.

 Processing Results
This section gives access to the output of all the AI processes. The user can also toggle

between the output screen for multiple AI process runs. This section provides the real-time

and interactive capability to examine the predictions made by the AI processes. The output

of the AI processes will be imaged with the defected regions marked on the image.

Additionally, the user can add missed regions of defects and edit incorrectly categorized

regions of defects. This serves two purposes: it allows the user to use their expertise to

store accurate images to the repository and it also provides accurate retraining feedback for

the AI processes. The output image generated by each AI process is color coded based on

the defect type. The color codes are as following:

Corrosion: Blue Crack: Red Bolt Issue: Yellow

 Corrosion and Crack AI Processes
The AI processes for Corrosion and Crack use a similar method of defect inspection and

annotation. These AI processes mark the entire image into small rectangular tiles of fixed

dimensions. The tiles with defected region of interests are slightly color-shifted. This is for

better and easier identification of the defected regions. The color shift is necessary in the

event that a large region of tiles is flagged for defect and the tile outline alone becomes

ambiguous between adjacent boxes. These tiles are interactive, as the user can check and

uncheck them depending on their expertise that the AI process falsely classified or missed

classifying the defect.

P a g e | 47

Figure 35: Crack Processing Feedback

 Bolt Issue AI Process
The AI process for bolt issues is used to identify loosening and missing bolt faults. By

using AI, a rectangular region of interest is drawn around any missing or loosened bolts.

The bolt or bolt hole being inspected determines the size of these rectangula r regions of

interest. The user can draw, remove and redraw the areas of interest depending on their

expertise that the AI process falsely classified or missed classifying the fault.

P a g e | 48

Figure 36: Bolt Processing Feedback

Image View
This section grants access to view the latest image captured by the visual and thermal

cameras, along with the ability to view the latest masked image. The buttons provided

under this section offer adaptability, allowing the user to set the visual image or re-crop it

for rerunning AI processes on the existing visual image. With just a click, the user can

examine the visual and thermal images, analyze the masked image for better marking of

defect region of interests, and effortlessly manipulate the visual image for optimized AI

analysis. Utilizing the strength of these capabilities on the Payload Control page will

simplify and improve the ancillary structure defect detection process.

Miscellaneous
The Miscellaneous section offers a collection of graphical user interface centric control

options, providing convenient functionalities for enhanced user experience. Within this

section, the user can find options such as saving output images, accessing the repository,

performing connection checks with the payload, and clearing all selections. These will not

only provide easy preservation of the generated images for future reference or

documentation purposes but also will provide quick access to a centralized repository. The

Connection Check button is a crucial functionality and must be done below every flight.

This will allow the user to verify the connectivity status with the payload microcomputer

and the laptop, ensuring a stable and reliable connection. Lastly, the Clear All Selections

P a g e | 49

button conveniently resets any selected settings or parameters, enabling a fresh start or

facilitating a streamlined workflow. These graphical user interface-centric controls

enhance the overall usability and efficiency within the application.

Table 13: Miscellaneous GUI Buttons

Button Name Button Functionality
Start Live Streaming - Visual -Starts live streaming from visual camera
Visual Image Capture -Takes a picture from the visual camera
Start Live Streaming - Thermal -Starts live streaming from thermal camera
Thermal Image Capture -Takes a picture from the thermal camera

Run Process -Chooses the AI process/processes to run

Corrosion -Visualizes the output of the AI model for
corrosion defect

Crack -Visualizes the output of the AI model for crack
defect

Bolt Issue -Visualizes the output of the AI model for bolt
issue defect

Visual Image -Visualizes the last captured image from the visual
camera

Thermal Image -Visualizes the last captured image from the
thermal camera

Cropped Visual Image -Visualizes the last cropped visual image

Finalize Boxes -Saves the final inspector annotated and approved
selection of the defect output shown on the screen

Repository -Saves the final annotated output shown on the
screen to a repository

Connection Check -Checks whether a connection between the laptop
and the microcomputer on the payload has been
established

Clear -Clears the current process run and set all the
values to default

Close Program -Closes the GUI application and turn off the
microcomputer on the payload

Previous Menu -Goes back to the Initial Launch page

5.6.1.3 Image Masking page

The Image Masking page provides the functionality to crop a specific area of interest within

the visual image offering a high level of control and customization. This subsequently

becomes the focus for applying the AI process/processes of choice. This feature offers

flexibility in running AI processes, as it enables users to focus on a particular region within

the image for analysis. By creating the mask, the user can define and isolate the desired

P a g e | 50

area, fine-tune, and optimize the analysis allowing for targeted and precise application of

AI algorithms. This capability enhances the efficiency and accuracy of AI processing by

concentrating computational resources on the specific region of interest.

Figure 37: Image Masking Page

Button Name Button Functionality

Save Selection -Saves the cropped selection of the visual image

5.6.1.4 Repository Page

The Repository Page is specifically designed to provide inspectors with a visual overview

of past inspections, showcasing images of three types of detected defects: corrosion, cracks,

and bolt issues. This page serves as a centralized platform to catalog and organize the visual

evidence of these defects detected after the AI processing and appropriate annotations

given by the inspectors. The user may quickly access and analyze the detected defects for

additional investigation and documentation using this page. The repository allows for

efficient retrieval and comparison of defect images, enabling the user to track the

progression of corrosion, monitor crack growth, and assess the severity of bolt issues over

time. In addition, the page also features a save button that allows the user to save the

P a g e | 51

displayed image. This will allow the user to easily attain and utilize the defect images for

documentation, reporting, or further analysis outside the software.

Figure 38: Repository Page

The user can choose the type of defect repository they wish to view using the Select Defect

Type drop down options. The Select Defect Type has the following drop-down options:

Figure 39: Select Defect Type

Option Name Option Functionality

Corrosion To view the defects from corrosion repository

Crack To view the defects from crack repository

Button Name Button Functionality

P a g e | 52

Previous -Views the previous image in the selected defect
repository

Next -Views the next image in the selected defect
repository

Save As PNG -Saves the image as PNG in the download folder
Previous Menu -Goes back to the Payload Control page

5.6.1.5 AI Process Retraining Control page

Figure 40: Retraining Page

Button Name Button Functionality
Image Dataset -Optimizes the image dataset for the selected AI

process for retraining
Train Model -Trains the selected AI process
Transfer to Payload -Transfers the trained AI process model file to the

microcomputer on the payload
Connection Check -Checks whether a connection between the laptop

and the microcomputer on the payload has been
established

Previous Menu -Goes back to the Initial Launch page
Close Program -Closes the GUI application and turn off the

microcomputer on the payload

The user can choose the type of AI process they wish to train using the Select Defect Type

drop down options. The Select Defect Type has the following drop-down options:

P a g e | 53

Figure 41: Select Defect Type

Option Name Option Functionality

Corrosion -Runs the train Al process for detecting corrosion
defects

Crack -Runs the train Al process for detecting crack
defects

Bolt -Runs the train Al process for detecting bolt issue
defects

5.6.1.6 Step-by-step Instructions for Inspection Mission

1. On the launch screen of the GUI, click Payload App to start.

P a g e | 54

2. Start live streaming from visual and/or thermal cameras by clicking the
corresponding buttons shown below.

i. Place the new popup window(s) containing live streams to a preferred
location on the screen.

3. Start the flight.
4. Any area of interest on the target structure can have a still image captured from

either the visual or thermal camera. Click the corresponding button shown below.

P a g e | 55

5. If the inspector suspects one or more of the three defect categories (Corrosion,
Crack, or Bolt Issue) may be present, they can run a defect detection process to

one or more of the defect detection processes can be checked to run. After selecting

P a g e | 56

6. The processing may take several minutes to run. The steps and output of the
processing can be shown in the Processes box.

7. When the processing is complete, the GUI will display the areas of the image that
contain the selected defects. The GUI provides interactive controls to add or remove
defects, if the inspector determines the processes are incorrect. These controls are
explained in Section 5.6.1.7 for Corrosion and Crack defects and Section 5.6.1.8
for Bolt defects.

8. Once the defects are finalized, the images can be saved to a repository for future
review. Section 5.6.1.4 explains saving the images to a repository.

9. These steps can be repeated for all other areas of interest in the target structure.

5.6.1.7 Interactive functionality for Corrosion and Crack defects

The Interactive GUI functionality works the same for both Corrosion and Crack defects.

The only difference is Corrosion defects are identified by blue boxes, while Crack defects

are identified by red boxes.

When the Defect Detection process for Corrosion and/or Crack are run on the current

image, the Interactive GUI will divide the image into an 8 x 4 grid of sub-images to prepare

for processing. When the processing is complete, the Interactive GUI will place a box

around each sub-image that contains the defect(s). If the inspector disagrees with the

P a g e | 57

identified defect locations, they can change the selected boxes before storing the image in

the repository. They can de-select a sub-

and the box will be removed. Also, they can select a sub-image that they believe does

An example is provided in Figures 35 and 36 below. In Figure 35, the Corrosion process

identified defects in the following sub-image locations (column, row coordinates from top

left): (5,1), (6,1), (7,1), (8,1), (4,2), (1,3), (3,3), (4,3), (5,3), (2,4), (6,4), (7,4), and (8,4).

However, Figure 36 shows the result of the inspector disagreeing with the process. They

de-selected sub-images (5,1), (6,1), and (8,4) meaning the model falsely selected these sub-

images as defective. The inspector also selected sub-images (4,1), (3,2), (5,2), etc. meaning

the process falsely did not identify these sub-images as defective.

Figure 42: Image after Corrosion Process

P a g e | 58

Figure 43: Image After Corrosion Process and Inspector Interaction

When the inspector is finished with modifying the defect boxes on the image, they can save

the image to the repository, which will include any changes made by the inspector. The

inspector can repeat the process of modifying the boxes of the current image a nd saving to

repository.

5.6.1.8 Interactive functionality for Bolt defects

The Interactive GUI for Bolt Issues works differently than Crack and Corrosion. When the

Defect Detection process for Bolt Issues is run on the current image, the Interactive GUI

will identify the exact location of each Bolt Issue, without having to divide the image into

sub-images. Yellow bounding boxes will be drawn around each identified defect, with

numbers listed on the top left corner of each box. The size of the boxes vary, depending on

the sizes of the defective areas. When the processing is complete, the pop-up box shown

below appears.

P a g e | 59

If any defects appear to be incorrect, the inspector can click yes, otherwise they can click

no. If yes, is clicked, the pop-up box below appears. The inspector enters in the box

numbers to be deleted, separated by a comma (example 1,2).

-up is closed. The Bolt

Issues process would need to be re-run to get to this pop-up again to delete the boxes. After

these boxes are closed. The inspector can draw boxes around any areas tha t they determine

to be a Bolt Issue. The boxes can be any size and can be drawn in any direction. The

inspector just needs to click and hold in one corner of the desired box, then drag the mouse

to the opposite corner of the box. After each new box is drawn, the pop-up box below is

shown. The inspector can click Yes to save the box, or no to delete the box.

When the inspector is finished with modifying the defect boxes on the image, they can save

the image to the repository, which will include any changes made by the inspector. The

P a g e | 60

inspector can repeat the process of modifying the boxes of the current image and saving to

repository. An example image with identified Bolt defects is shown below.

Figure 44: Bolt Defect Box Feedback

5.6.2 Step-by-step Instructions for Model Retraining

On the launch screen of the GUI, click Train Models to start.
On the Train Model page, choose the type of defect training model to train using the Select
Defect Type drop down options.
Choose Corrosion or Crack.
Click on the Image Dataset button to view the message for choosing the training dataset.
Inspector needs to choose the images from wc/woc folder
(c:/Project_Parent/Model_training/corrosion_dataset or
c:/Project_Parent/Model_training/crack_dataset) for retraining. The selected images
should be stored in the respective training dataset. For example for corrosion :
C:\Project_Parent\Model_Training\corrosion\Corrosion\Submission_nov_2\Dataset\train\
WC or WOC
For crack:
C:\Project_Parent\Model_Training\crack\Pythoncode\caltec256subset\train\a(WC) or
b(WOC)
Click on the Train model button to start the training. A black consol window will appear
which will highlight the progress of the training. Please do not turn off the consol window
or lock the laptop screen. It will take nearly 2 hours to complete the training for corrosion
and around 45 mins for crack.
Once the black console window automatically disappears, it means the model has been
trained successfully. Corrosion model will be training for 50 epochs and Crack model will
be training for 30 epochs.

P a g e | 61

Now click on Previous Menu button to return to the launch page of the GUI.
Payload App within the app's interface.

Click on the 'Connection Check' button on the Payload Control page. A successful ping
would indicate that the connection between the laptop and the payload is established and
ready for file transfer.

o return to the launch page of the GUI.

Reselect the defect model type from the Select Defect Type drop down options
Click on Transfer to Payload button. This button takes a backup of the existing model
prediction file in the Jetson board and transfers the newly generated model file to its
necessary folder in the Jetson board.

6 Technical Section

The following sections in the User Guide describe the design features of the Payload and

GUI. These are not crucial to operating the system. If troubleshooting is necessary, these

sections are a good resource to understand the system design.

6.1 Microcomputer wireless connectivity

To

given the highest priority level of 999. This prioritization means that when multiple

above others. Consequently, as soon as the microcomputer boots up, it will promptly

intervention. This streamlined setup ensures a convenient and reliable connection between

the microcomputer and the laptop, facilitating efficient operation and maximizing

productivity during the inspection process. If the router changed to factory setting, it can

6.2 Auto connectivity between laptop and the microcomputer

SSH password less login is used here to establish a password less and synchronous mode

of communication between the laptop and the microcomputer. It is an effective

authentication method for tasks like file synchronization, and server access. This method

relies on a pair of public and private keys. It is set up by first ly generating a key pair using

P a g e | 62

the ssh-keygen command. Then, after creating an SSH directory on the server, public keys

are uploaded to the server using ssh-copy-id command on Linux client or scp command on

Windows client. Next, connections are tested after configuring the SSH agent permissions

for the .ssh directory and the authorized_keys file. Once completed, a passphrase-free

passwordless connection to the server is established, enhancing security and convenience.

Here both the Windows OS on the laptop and the Linux OS on the microcomputer act are

set with the passwordless SSH login. In the Windows system the .ssh directory is located

C:Users\NDDOT .ssh directory is located under

the root directory.

** If the router goes back to the factory setting, please check docs.gk-inet.com for resetting

6.3 Form 1 Overview

Form 1 is the main form of the GUI that the inspector will use. It commands the payload,

shows the images from the payload, and includes interactive controls that the inspector can

use to modify and store defect data. The back-end code files are Form1.cs and

Form1.Designer.cs.

Form1.Designer.cs provides the settings for all the GUI elements (buttons and text boxes

for example). Most of the lines in this file were automatically generated by Visual Studio,

so not much annotation is present.

Form1.cs has all the other code for handling inputs and outputs of the GUI. All the methods

I processes.

A large section of Form1.cs code is used for handling the interaction between the inspector

and the GUI for modification of defect data. The three-

modified frequently and is used for saving the crack and corrosion defect loc ation to ensure

the information is retained when the GUI is changing the currently displayed image. When

the inspector changes the image to be displayed on the GUI, the new image is re -printed

on the GUI screen and any defect boxes are re-drawn based on the saved data within the

types as follows:

P a g e | 63

0 = Corrosion
1 = Crack
2 = Bolt

images for storage in the repository (as explained in the section on Form 5). If the image

contains defect boxes, the images saved in the repository will include those boxes.

6.4 Form 4 Overview

Form 4 is the form that allows the inspector to crop a captured image to run a reduced

subset through the AI processes. The Form takes the current image and allows the inspector

to click and drag their mouse over the regions that they would like to crop. The form will

prompt them upon creating the crop if they like it or would like to redo the cropping. To

allow cohesion with the Crack and Corrosion models, the crop extends the crop region to

cover the 8 x 4 grid of boxes used for Crack and Corrosion defect classification. This form

does not require many lines of code, and thus is able to run and close quickly when called.

6.5 GStreamer

GStreamer is an open-source multimedia framework used to create versatile multimedia

applications. By constructing pipelines that connect different plugins, developers can

process and transmit audio and video data in a flexible and modular manner. With sup port

for a wide range of multimedia formats and protocols, GStreamer is highly customizable

and extensible, making it a popular choice in the Linux ecosystem. Its extensive

documentation, tutorials, and community support empower developers to leverage its

capabilities for creating diverse multimedia applications and solutions.

GStreamer can be used to create both the server and client components of a streaming

system. The server-side component typically involves designing a GStreamer pipeline that

captures audio and video from a source (e.g., camera), encodes the data, and strea ms it over

a network protocol such as RTP (Real-time Transport Protocol) or RTSP (Real-Time

Streaming Protocol). This pipeline can be set up on a server machine. On the client -side,

another GStreamer pipeline is designed to receive the streamed audio and v ideo data from

the server. This pipeline decodes the received data and can be configured to play it back,

display it on a screen, or process it further.

P a g e | 64

Please refer to the Gstreamer official documentation for detailed system requirements and

compatibility information at https://gstreamer.freedesktop.org/.

6.6 Visual image capture

The visual image capture using the Arducam 477P HQ camera is executed using the python

Visual_Capture.py

with a timestamp in a designated folder. It then performs some operations on the captured

image, such as copying it to another folder, renaming it, resizing it, and saving the resized

versi Image_Save_Visual.sh

Visual_Capture.py

The breakdown of the code executed on the microcomputer is as follows:

1. The cmd variable contains the command to capture an image using the Arducam 477P HQ
camera.

2. It initially stores the image with the size, width = 1920 and height = 1080, and format of
jpeg.

3. The os.system() function is used to execute the entire command.
4. The image is saved in the path

5. The current timestamp is obtained using datetime.datetime.now() and formatted as a string
with microsecond precision.

6. The captured image is renamed using os.rename() to include the timestamp in the filename.
7. The glob module is used to find all the JPEG files in the folder specified by folder_path.

The max() function is then used to find the most recently created file based on the creation
time os.path.getctime().

8. The most recently created file is copied to the
/home/nddot/IMAGE_CAPTURES/RUN_FOLDER shutil.copy().

9. Similar to step 4, the most recently created file in the
/home/nddot/IMAGE_CAPTURES/RUN_FOLDER glob and

max().
10. The file is renamed to 1.jpg /home/nddot/IMAGE_CAPTURES/RUN_FOLDER

directory using os.rename().
11. The image is loaded using cv2.imread().
12. The height1 and width1 variables are calculated to obtain dimensions that are multiples of

227.
13. The image is resized using cv2.resize() with the calculated dimensions.
14. The resized image is saved as C.jpg in the

/home/nddot/IMAGE_CAPTURES/RUN_FOLDER cv2.imwrite().

The images are numbered according to the date and time to consider the latest image for

processing. The images are also rescaled to the multiple of 227 * 227 as the AI models

P a g e | 65

used for detecting corrosion and crack have 227 * 227 as the input shape of the image. The

image file named C.jpg

directory serves as the input image for running various AI models. It acts as a base image

that undergoes processing either in its entirety or after being cropped depending on the

inspector specific requirements of the AI models. As the AI models require input images

to work with, C.jpg must be regularly updated with the latest content to ensure accurate

and up-to-date results.

6.7 Thermal image capture

The thermal image capture using the Teledyne FLIR Boson camera is executed using the

thermal_capture.py

saves it with a timestamp in a designated folder. It then performs some operations on the

captured image, such as copying it to another folder, renaming it, resizing it, and saving

the resized versi Image_Save_Thermal.sh

thermal_Capture.py

The breakdown of the code executed on the microcomputer is as follows:

1. The cmd variable contains the command to capture an image using the Teledyne FLIR
Boson camera.

2. It initially stores the image with the size, width = 640 and height = 512, and format of I420.
3. jpengc
4. The os.system() function is used to execute the entire command.
5.
6. The current timestamp is obtained using datetime.datetime.now() and formatted as a string

with microsecond precision.
7. The captured image is renamed using os.rename() to include the timestamp in the filename.
8. The glob module is used to find all the JPEG files in the folder specified by folder_path.

The max() function is then used to find the most recently created file based on the creation
time os.path.getctime().

9. The most recently created file is copied to the
/home/nddot/IMAGE_CAPTURES/RUN_FOLDER shutil.copy().

10. Similar to step 4, the most recently created file in the
/home/nddot/IMAGE_CAPTURES/RUN_FOLDER glob and

max().
11. The file is renamed to 2.jpg /home/nddot/IMAGE_CAPTURES/RUN_FOLDER

directory using os.rename().

The images are numbered according to the date and time to consider the latest image for

processing.

P a g e | 66

6.8 Visual image live streaming

The smart GUI interface on the laptop displays the live stream captured by the Arducam

477P HQ camera, which is connected to a microcomputer. The camera captures visual data,

and this real-time video feed is transmitted to the laptop for viewing. For avail ing the live

streaming capabilities, GStreamer has been used.

The breakdown of the server end bash script live_test.sh

is as follows:

1. kill command is used to kill any process that is using port 5010.
2. The gst command is used to launch the gst-launch-1.0 utility with a pipeline for video

streaming.
3. It uses the v4l2src element to capture video from the specified camera device.
4. The image/jpeg format is selected with a width of 1920 and height of 1080, and a framerate

of 15 frames per second.
5. The tcpserversink element is used to stream the video over TCP, specifying the

microcomputer (host) IP address as 192.168.8.139 and the port as 5010.

The breakdown of the client end Windows batch script gstreamer_client.bat

on the laptop is as follows:

1. timeout command is used to pause the script execution for 4 seconds without displaying
any output on the console.

2. As the GStreamer binaries are installed in the location
C:\gstreamer\1.0\msvc_x86_64\bin cd command is used to change the current

directory to that directory.
3. The gst command is used to launch the gst-launch-1.0 utility with a GStreamer pipeline.
4. It uses the tcpclientsrc element to receive video from the microcomputer (TCP server)

running at 192.168.8.139 and port 5010.
5. The received video is then decoded using decodebin and displayed using d3dvideosink,

which renders the video using Direct3D on Windows.

The script prints the current time, waits for 4 seconds, and then prints the time again. It

then changes the directory to the GStreamer installation directory and launches a

GStreamer pipeline to receive and display video from a remote TCP server.

Note: Ensuring that the IP addresses and ports specified in the scripts are appropriate under

6.9 Thermal image live streaming

P a g e | 67

The smart GUI interface on the laptop displays the live stream captured by the Teledyne

FLIR Boson camera, which is connected to a microcomputer. The camera captures thermal

data, and this real-time video feed is transmitted to the laptop for viewing. For availing the

live streaming capabilities, GStreamer has been used.

The breakdown of the server end bash script live_test_thermal.sh

microcomputer is as follows:
1. kill command is used to kill any process that is using ports 5123 and 5021.
2. The gst command is used to launch the gst-launch-1.0 utility with a pipeline for video

streaming.
3. It uses the v4l2src element to capture video from the specified camera device.
4. The I420 format is selected with a width of 640 and height of 512.
5. The tcpserversink element is used to stream the video over TCP, specifying the

microcomputer (host) IP address as 192.168.8.139 and the port as 5123.

The breakdown of the client end Windows batch script gstreamer_client_thermal.bat

executed on the laptop is as follows:

1. timeout command is used to pause the script execution for 4 seconds without displaying
any output on the console.

2. As the GStreamer binaries are installed in the location
C:\gstreamer\1.0\msvc_x86_64\bin cd command is used to change the current

directory to that directory.
3. The gst command is used to launch the gst-launch-1.0 utility with a GStreamer pipeline.
4. It uses the tcpclientsrc element to receive video from the microcomputer (TCP server)

running at 192.168.8.139 and port 5123.
5. The received video is then decoded using decodebin and displayed using d3dvideosink,

which renders the video using Direct3D on Windows.

The script prints the current time, waits for 4 seconds, and then prints the time again. It

then changes the directory to the GStreamer installation directory and launches a

GStreamer pipeline to receive and display video from a remote TCP server.

Note: Ensuring that the IP addresses and ports specified in the scripts are appropriate under

6.10 Data transfer from payload and laptop

For transferring images, text and other necessary files in between the Linux system running

on the microcomputer and Windows system running on the laptop, socket programming

based on python is used. In socket programming for server and client data transfer , two

separate programs are created. One acts as the server, and the other as the client. The server

P a g e | 68

establishes a connection to a particular port on a local IP address and waits for client

connections. The server initiates a connection with the client once it connects. On the other

hand, the client starts a connection to the server by giving it the IP address and port number.

The client sends data to the server after the connection is established, and the server

receives and processes that data. Data is often sent as streams of bytes during this client-

server conversation. Data is converted from the client into bytes and transmitted over the

network to the server, which interprets and utilizes the data in accordance. The similar

procedure is used by the server to deliver data back to the client.

Python's socket module offers the tools needed to construct and maintain sockets for

network communication, making it simple to design client-server data transfer. The

breakdown of the server-end visual image transfer script Server.py

microcomputer is as follows:

1. The host variable is defined to specify the IP address of the server. In this case, it is set to
192.168.8.139.

2. The port variable is defined to reserve a specific port number on which the server will listen
for incoming connections. It is set to 5020.

3. The socket is bound to the specified IP address and port number using the bind() method:
s.bind((host, port)).

4. The socket starts listening for incoming client connections with a maximum backlog of 5
pending connections using the listen() method: s.listen(5).

5. The script enters an infinite loop (while True) to continuously handle incoming
connections.

6. When a client connects, the accept() method is called, which returns a new socket
representing the connection and the client's address.

7. The server receives data from the client using conn.recv(1024) command, where 1024
specifies the maximum number of bytes to receive at once.

8. The server opens the file 'C.jpg' in binary read mode ('rb').
9. The server reads the file in chunks of 1024 bytes using f.read(1024).
10. The server sends each chunk to the client using conn.send(l).
11. The loop continues until the entire file is sent.
12. The file is closed after sending the entire content.
13. The connection with the client is closed using conn.close().
14. The script exits the loop and finishes execution.

The breakdown of the client-end visual image transfer script Client_Visual_Camera.py

executed on the laptop is as follows:

1. The script creates a client-side socket object using socket.socket(), which is used for
establishing connections with the server.

2. The host variable is defined to specify the IP address of the server to which the client wants
to connect. In this case, it is set to 192.168.8.139.

P a g e | 69

3. The port variable is defined to reserve a specific port number on which the client will
attempt to connect to the server. It is set to 5020.

4. The client initiates a connection to the server using s.connect((host, port)), where the IP
address and port are provided as a tuple to the connect() method. This step establishes the
connection with the server.

5. The client opens a file 'Visual_Img.jpg' in binary write mode ('wb') on the client-side to
save the data received from the server.

6. The client enters a loop to receive data from the server in chunks.
7. The client receives data from the server in chunks of 1024 bytes using s.recv(1024). This

method call blocks until data is received.
8. If the received data is empty (i.e., the end of the file is reached), the loop breaks, indicating

the end of data transmission.
9. The client writes the received data to the file using f.write(data).
10. The client closes the file after receiving the entire content.
11. The client closes the connection with the server using s.close(), terminating the

communication between the client and server.

Below is the list of python files that indicate a server-client socket connection between the

laptop and the microcomputer.

Table 14: Python Socket Files

Executable File

on Laptop
Server/Client

Jetson: J

Laptop: L

Server/Client

Executable

File

Server/Client Specific

Python File Name
Port Purpose

Visual_Img.bat

Server J
Image_Save_

Visual.sh
Server.py

5020

To transfer

the captured

visual image. Client L
Visual_Image

_Client.bat

Client_Visual_Camer

a.py

Thermal_Img.ba

t

Server J
Image_Save_

Thermal.sh
Server_Thermal.py

5021

To transfer

the captured

thermal

image.
Client L

Thermal_Ima

ge_Client.bat

Client_Thermal_Cam

era.py

Corrosion.ba t

Server J

Corrosion_Pr

ocessing.sh

Corrosion_Se

rver.bat (L)

Server_Corrosion_Aft

er_Run.py

5024

-Transfers the

excel file

genera ted

after running

the AI model

for corrosion

detection

Client L
Corrosion_Cl

ient.bat
Client_Corrosion.py

Crack.bat Server J

Crack_Proces

sing.sh

Crack_Server

.bat (L)

Server_Crack_After_

Run.py
5023

-Transfers the

excel file

genera ted

after running

P a g e | 70

Client L
Crack_Client.

bat (L)
Client_Crack.py

the AI model

for crack

detection

Bolt.ba t

Server J

Bolt_Processi

ng.sh

Bolt_Server.b

at (L)

Server_Bolt_After_R

un.py

5022

-Transfers the

excel file

genera ted

after running

the AI model

for bolt issue

detection

Client L
Bolt_Client.b

at
Client_Bolt.py

Crop_Visual_Im

g.bat

Server L
Crop_Visual_

Server.bat

Crop_Visual_Server.p

y

5050

-Transfers the

cropped

image

coordinate

text file

Client J

Crop_Visual_

Transfer.sh

Crop_Visual_

Client.ba t (L)

Client_Crop_Visual.p

y

6.11 Image Splitting at Microcomputer End

The image C.jpg is used for running the AI models. The corrosion and crack AI models are

based on the AlexNet architecture. The AlexNet model requires input images of size

227x227 pixels. To achieve this, python scripts are used to split the original C.jpg image

into multiple smaller sub-images, each of size 227x227 pixels, which are then used as input

for the AI models. This approach allows the AI models to analyze different sections of the

original image individually, making it suitable for classification .

Below are the python files and the respective image path being the split images are placed.

Table 15: Python Splitting Files

AI Model File Name Sub Image Path

Corrosion split_jetson_2.py
/home/nddot/Run/Submission_n

ov_2/Dataset/test/

Crack split_jetson.py
/home/nddot/Run/crack/datanew

c/test/

A brief overview of the two split scripts is given below:

1. The script introduces the infile variable to represent the path of the input image file C.jpg
located at .

2. The variable savedir is defined, pointing to the directory where the split sub-images will
be stored.

P a g e | 71

3. The start_pos variable is initialized with the starting position (top-left corner) for cropping
the image. It is set to (0, 0).

4. To define the size of the sub-images, the cropped_image_size variable is used, with a width
and height of 227 pixels each.

5. The script opens the image using the Image.open() method from the PIL library and assigns
it to the variable img1.

6. The width and height of the original image are obtained using the size attribute of the img1
object.

7. A frame_num variable is initialized to keep track of the cropped sub-images, starting from
0.

8. Utilizing nested loops, the script iterates through the original image, cropping it into
smaller sections measuring 227x227 pixels using the img1.crop() method.

9. For each split sub-image, a filename is created based on the frame number and the original
image filename without the extension.

10. Each split sub-image is saved in the specified directory using the crop.save() method, with
filenames like C001.png, C002.png, and so on, according to the frame number.

11. After saving each sub-image, the frame number is incremented to ensure unique filenames
for subsequent sub-images.

6.12 Image Cropping at Microcomputer End

In the smart interface, inspectors are provided with the tool to crop the captured images

from the visual sensor. Image cropping allows the inspector to define a specific area of

interest within the captured image. This area could contain the targeted area of defect that

would require classification.

The advantage of this cropping feature is two-fold:

Faster Processing: Instead of analyzing the entire image, the system only needs to process

the cropped area. This saves time and speeds up the inspection process.

Efficient Resource Use: When running AI models or performing analyses, the system

allocates computing resources more effectively since it's working with a smaller, focused

image area.

Following the inspector's image cropping, the precise cropping coordinates, encompassing

the top left and bottom right points, are transferred from the laptop to the microcomputer

to initiate processing. These coordinates are stored in the

/home/nddot/IMAGE_CAPTURES/VISUAL_CROP/1.tx" file.

The breakdown of the crop script Crop_Cor_to_img.py

is as follows:

1. The script starts by importing necessary libraries: glob, os, re (for regular expressions), PIL
(Python Imaging Library for image processing), shutil, and cv2 (OpenCV).

2. It defines the folder_path and file_type to locate JPEG image files in a specific directory.

P a g e | 72

3. The script uses glob.glob() and max() to find the most recently created JPEG image file in
the specified folder.

4. The found file is copied to another directory named
.

5. It locates the copied image in the VISUAL_CROP directory, then opens and reads a text
file named 1.txt associated with the image.

6. using a regular expression to extract
numerical values that represents cropping coordinates.

7. It resizes the image to dimensions that are multiples of 227.
8. It crops the image based on the specified coordinates (x, width, y, height).
9. It saves the cropped image in the

 directory.
10. If no valid coordinates are found in the text file, or if there is an error reading the text file,

appropriate messages are printed.

6.13 AI Processes Corrosion

The image classification-based Alex Net model has been used for corrosion detection. A

total of 9254 images have been used for training the model. It is a pretrained model in

Pytorch framework in Python. All the images are annotated into two classes; with corrosion

(WC) and without corrosion (WOC).

The breakdown of the corrosion script Corrosion.py

as follows:

1. Image augmentation has been done by using transform.
RandomsizedCrop/RandomRotation/RandomHorizontalFlip/CenterCrop

2. Then the augmented image converted to torch tensor of values 0 and 1 by the
function transforms.ToTensor().

3.

4. os.path.join() has been used to concatenate the paths of main folder to connect the

training and validation folders.
5. The listdir() function provided by the os module has been used to get the number

of classes.
6. To Load data from folders ImageFolder() has been used.
7. The label of the images has been obtained by using class_to_idx.items().
8. Dataloader module has been used to iterate the loaded data.
9. The final layer of Alex Net has been modified to work as a binary classifier.

6.14 AI Processes Crack

P a g e | 73

Similar to corrosion, the image classification-based Alex Net model has been used for

crack detection. About 200 images with 1500 sub images have been used for training the

model. It is a pretrained model in Pytorch framework in Python. All the images are

annotated into two classes; with crack (WCrack) and without crack (Without Crack). In

the following, all steps were summarized.

 Image augmentation and superimposed images has been done by transferring
images colors and crack, as well as crack direction.

 Data was divided into two main datasets (train and validation) with two subfolders.
 We generated a balanced data set (791 crack images and 791 uncrack images) for

crack with lab data since there is no available data set for crack.
 We also added about 300 new images based on recent crack images and our

inspection. This folder (caltec256subset) now contains:
- 845 crack images (folder (a))
- 845 uncrack images (folder (b))
 os.path.join() has been used to concatenate the paths of main folder to connect the

training and validation folders.
 The listdir() function provided by the os module has been used to get the number

of classes.
 To Load data from folders Image Folder () has been used.
 The label of the images has been obtained by using class_to_idx.items().
 Data loader module has been used to iterate the loaded data.
 The final layer of Alex Net has been modified to work as a binary classifier.
 Test algorithm in real time: this part contains a script file in Python which usually

works to call images in test folder and order it based on subimages names, as well
as calling trained model to predict class labels of each sub images. This part was
designed in such a way that the inspectors can call model and sub images in real
time and summarize all results with classes in excel file.

 This excel was used as an input file to get main information to inspectors about the
location of crack.

 Finally, the test sub images were used the performance algorithms. To do this, the
train model was used to predict the class of each sub image.

in real time.

 In total, the crack folder contains all images related to the train dataset, trained
model, and all sub images
related to the test dataset.

6.15 AI Processes Bolt Issue

Just to reduce system complexity in real time as well as make sure that all code is

compatible with Jetson, the same liberty (Py torch) was used again for bolt detection. Based

P a g e | 74

on the problem, bolt considered as small object and using object detection algorithm is one

of the best options based on previous studies.

 The following model builders can be used to instantiate a Faster R-CNN model,
with pre-trained weights.

 All the model builders internally rely on the torchvision.models.detection.faster _
rcnn.FasterRCNN _ Resnet base class.

 All images were annotated based on bounding box location.
 The folder contains three excel files for all annotated boxes for training and testing,

and all images.
 After training, the model was saved in the same folder.
 In test mode, the inspectors call train models with test images just to predict the

defected bolt location.
 After prediction, the carinated related to defected bolt was saved in text file.

P a g e | 75

Appendix A Payload Interface Design

1.Materials and Manufacturing

1.1 Stratasys F370 Composite 3D Printer

P a g e | 76

1.2 ABS M30 Black/Ivory Material Properties

P a g e | 77

P a g e | 78

2 Component Design

2.1 Battery and Jetson Housing

Top-Down View

Front View

P a g e | 79

Side View

P a g e | 80

2.2 Battery and Jetson Housing Brackets

Front Upper Bracket

Top-Down View

Side View

P a g e | 81

Rear Upper Bracket

Top-Down View

Back View

P a g e | 82

Lower Bracket

Top-Down View

Front View

P a g e | 83

2.3 Gimbal Housing

Side Half-Section View

Front Half-Section View

P a g e | 84

Top-Down View

P a g e | 85

2.4 Gimbal Housing Brackets

Rear Gimbal Bracket

Top-Down View

Back View

P a g e | 86

Front Gimbal Brackets (same model, just mirrored)

Top-Down View

Side View (Smaller Side)

P a g e | 87

2.5 Camera Housing

Top-Down View

P a g e | 88

Bottom View

P a g e | 89

Rear/Interior View

P a g e | 90

2.6 Camera Housing Clip-on Cover

Exterior-Facing Side View

Bottom View

P a g e | 91

Side View

	Smart Inspection of Ancillary Structures in North Dakota Using Unmanned Aerial Systems
	Table of Contents
	List of Tables
	List of Figures
	Executive Summary
	1. Introduction
	2. Inspection Methodology
	2.1 Current Practice for Inspection
	2.2 Autonomous defect detection method.
	2.3 Real time defect detection using UAS
	2.4 Choice of UAV
	2.5 Wireless Communication
	2.6 Smart Graphical User Interface
	2.7 Cameras
	2.8 Data Transfer

	3. Graphical User Interface
	3.1.1 Interactive Defect Identification on GUI
	3.1.2 Back-end GUI Process
	3.2 AI model Architecture
	3.2.1 Corrosion detection model
	3.2.2 Crack detection model
	3.2.3 Bolt Detection Method

	3.3 Data Annotation
	3.4 Data Augmentation

	4. Payload System Design
	4.1 Payload Equipment
	4.2 Power Consumption
	4.3 Custom Modeled Payload Fastening System
	4.4 Validation
	4.4.1 System Validation in Controlled Environment
	4.4.2 System Validation with FIeld Test

	5. Limitation and future work
	5. User Guide
	5.1 Introduction
	5.2 Hardward Components
	5.3 Software Components
	5.4 System Architecture
	5.5 Startup Instructions
	5.6 Operation Instruction
	5.6.1 Functionalities of the GUI
	5.6.1.1 Initial Launch page
	5.6.1.2 Payload Control Page
	5.6.1.3 Image Masking Page
	5.6.1.4 Repository Page
	5.6.1.5 AI Process Retraining Control Page
	5.6.1.6 Step-by-step Instructions for Inspection Mission
	5.6.1.7 Interactive functionality for Corrosion and Crack defects
	5.6.1.8 Interactive functionality for Bolt defects

	5.6.2 Step-by-step Instructions for Model Retraining

	6. Technical Section
	6.1 Microcomputer wireless connectivity
	6.2 Auto connectivity between laptop and the microcomputer
	6.3 Form 1 Overview
	6.4 Form 4 Overview
	6.5 GStreamer
	6.6 Visual image capture
	6.7 Thermal image capture
	6.8 Visual image live streaming
	6.9 Thermal image live streaming
	6.10 Data transfer from payload and laptop
	6.11 Image Splitting at Microcomputer End
	6.12 Image Cropping at Microcomputer End
	6.13 AI Processes Corrosion
	6.14 AI Processes Crack
	6.15 AI Processes Bolt Issue

	Appendix A Payload Interface Design
	1. Materials and Manufacturing
	1.1 Stratasys F370 Composite 3D Printer
	1.2 ABS M30 Black/Ivory Material Properties

	2 Component Design
	2.1 Battery and Jetson Housing
	2.2 Battery and Jetson Housing Brackets
	2.3 Gimbal Housing
	2.4 Gimbal Housing Brackets
	2.5 Camera Housing
	2.6 Camera Housing Clip-on Cover

