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Executive Summary

Periodic inspection of highway ancillary structures plays a vital role in maintaining
uninterrupted highway operation. Utilizing small Unmanned Aerial Systems (UAS)
technology allows for ancillary structure inspections to become faster and cheaper,

providing a benefit to state agencies and the public in the state of North Dakota. However,
the existing available UAS technology and UAS payload does not offer real-time
autonomous defectdetection usingartificial intelligence (Al) updated with inspector input.
This report describes the design and functionality of a payload equipped UAS that can
provide real-time inspection of ancillary structures with a developed built-in AI model
interface. The models are developed using deep learning models to autonomously detect
common defects in ancillary structures (corrosion, missing bolts, and cracks), to assist

inspectors for more robust condition assessment. The developed payload system includes
a microcomputer capable of running multiple Convolutional Neural Network (CNN)

models during flight. The researchteam developed aset of annotated datasets foreach type
of defect investigated in this project. AlexNet-integrated models for corrosion and crack
detection were trained on 9257 and 1500 images, respectively. The models label tiles of
each image if corrosion or crack is detected. Faster RCNN was trained on 1000 images for
defective bolted connection that are common in ancillary structures. The trained R-CNN
automatically putsa bondingbox around the defected area in the bolted connection images.
All models reached over 90% accuracy in training and validation. A Graphical User
Interface (GUI) is developed to interact with the payload through a laptop. The inspector
can run the GUI to collect visual or thermal images, classify defects, accept or reject the
defects, re-train the models based on new annotated data, and store final defect detection

results. The payload consist of both bota and thermal sensing to capture images and live
stream, relaying the data to the ground station laptop through a shared Wi-Fi network. A
live stream of the visual and thermal sensors allows the operator to quickly assess the
structure and determine which regions need further evaluation. The payload consists of
Ground Station Laptop with GUI and repository, Portable Wi-Fi router, Microcomputer
Board, Visual camera, Thermal camera, Housing and mounting equipment, Gimbal. The

payload functions were tested and verified in realistic environments. The payload
performed well during the test but was found to have a limitation of slow processing time.
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1 Introduction

Non-bridge structures such as overhead sign structures, high mast light poles, and traffic
signal mast arms are referred to as ancillary structures on highways. Regular inspection of
these structures is important. To ensure structural integrity, all responsible authorities
require annual inspections ofanchorbolts, joints, and base plates. Negligence to do so over
the time can reduce the service life and, in many cases, cause the structure to fail. Among
these, corrosion, which reduces the structure’s service life, is the destructive attack of a
metal by chemical or electrochemical reaction with its environment. Though some
ancillary steel structures may be painted, protection is most often provided using
galvanizingor fabrication using weathering steel. Unfortunately, environmental corrosion
cannot be generalized in terms of sources. Several factors such as exposure time to the
corrosive environment, atmospheric pollution level might control corrosion at micro level.
The authors of [1-2] revealed that starting with the rough texture at the surface corrosion
can propagate inside the structure. This not only increases the maintenance cost due to the
continuous reactivity with the surrounding electrolyte but also responsible for 42% of
failure condition of infrastructures [3]. The other defects that need to be taken care of are
the fatigue crack and defective bolts. High ancillary structures are subjected to dynamic
loads such as wind gusts, truck induced gust etc. This cyclic loading can introduce fatigue
stress which may be started earlier than the yield stress at static loading. In addition to this,
defective welding can initiate fatigue cracks by acting as a weak joint. However, joint
damage can happen due to loosening or missing bolts too. The fastener can be loosened
and started to contribute to failure of the joint. Though the initiation of failure of an anchor
rod or bolt in a structural connection may seem apparent, even secondary fasteners that fail

can lead to sign breakage and small items falling into traffic.

The cause of a joint failure is not only cyclic loads, but bolted joint failure can also occur
due to environmental causes [4]. For instance, higher temperature may reduce the load
carrying capacity of the bolt and thus lead the structure to be unstable. Because of losing
structural integrity, catastrophic accidents may take place. Thus, effective monitoring and
diagnosis of the bolt connections are necessary to ensure that structures are safe and

reliable.
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In the United States, periodic inspections of in-service structures such as bridges, dams etc.
cost significant amount of money to be conducted by human labor [5]. Satisfying the
maintenance and protection of traffic safety requirements while controlling costs within
the acceptable limits could be challenging in the current practice. There is a need to
establish a safe, repeatable, and cost-effective methodology to inspect ancillary structures
in North Dakota. Autonomous defect detection mechanism integrated with unmanned
aerial vehicles (UAVs) can be used as a safe and inexpensive measure to introduce
revolutionary refinement in this arena. The MDOT (2019) has shown 60% cost savings
associated with drone-based inspections; moreover, a report from the American
Association of State Highway and Transportation Officials (AASHTO 2018) has
proclaimed that 35 of 44 reporting state DOTs with previous experience are deploying
aerial platforms in some capacity.

2 Inspection Methodology

2.1 Current Practice for Inspection

There are approximately 1000 different types of state-owned ancillary structures (Table 1)
on the different highways of North Dakota. Visual Inspection is the currently practiced
method for defect assessment, which is time-consuming for vast areas, impossible for
inaccessible areas and subjective to the inspector. In addition to this, gaining access to the
structure for inspection personnel is one of the most difficult challenges for the inspection
and evaluation of overhead sign structures. Inspection challenges arise from the need to
satisfy Maintenance and Protection of Traffic (MOT) safety requirements while controlling
costs within acceptable limits. Such access strategies include night work, mobile lane
closures, and other innovative methods for short-term lane closures. Moreover, FHWA
recommends to be equipped with enough auxiliary equipment to perform any kind of
structural inspection [6].

Table 1: Number of ancillary structures at North Dakota

Type Number (approximate)
Traffic Signals 450
Overhead Signs 175
High Mast Lights 375
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Sign structure inspection can be a hazardous structural inspection. Per guidelines, the sign
structures are often located at the ‘gore’ or exit areas of high-speed roads where work zone
safety setups could be extremely difficultto set up [6]. In consequence, it is routine that
the inspector ‘climbs’ the structure, which is complicated due to angled diagonals and
slippery structural members. Vehicle mounted bucket (Figure 1) is the most typical way to
access the sign structure. A 30 ft boom is sufficient for inspection. But most of the time
these vehicles should be rented from cable and telephone companies. Because of traffic in
the morning, some work needs to be postponed to nighttime. If inspections are planned to

be done at night, adequate lighting must be provided to avoid hazards.

Figure 1: Inspection with (a) Bucket truck and (b) Climbing [2]

For external corrosion and bolt missing/loosening detection, visual inspection is the most
reliable method. But for crack and internal corrosion detection, non-Destructive Testing
(NDT) is an important tool used for inspection of ancillary structures. Examples include
small fatigue cracks in welds, corrosion occurring on the interior of the structural element,
and cracked anchor rods. Usually, a dye penetrant test and magnetic particle test are
performed to detect surface cracks. For the internally propagated cracks, eddy current is
used. Ultrasonic thickness ‘D meter’ measurements can help to confirm the internal

corrosion which may be externally invisible.
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Figure 2: Thickness Measurement at Critical Location of Structure Post [2]

Current inspection techniques can be challenging to the transportation agencies due to the
requirement of preplanning for the lane closure [7]. Moreover, onsite documentation is
another challenge as lack of coordination may lead the inspector to revisit the site once
again. In addition to this, manual inspection result may subjectto the inspector’s perception

which might be inconsistent.

2.2 Autonomous defect detection method

Different image-based algorithms have been used by the researchers to identify the
corrosion in steel structures. Conventional image processing methods such as image

registration by the binary information, k-mean clustering, color space changing etc. were
used by the researchers [8-10, 1, 11] in detecting the corroded pixels from the images. On
the otherhand, a model has been developedby Lee et al. [12] to identify the defective pixel

from the variation of statistical parameters such as mean, mode, median etc. Some
researchers stepped forward by using different deep learning models such as Faster RCNN
[13],ResNet 50 [13],VGG16 [14] fordetectingcorrosionin steel structures. Fatigue cracks

in steel structure is a challenging problem to mitigate [15]. Unfortunately, fatigue cracks
in steel did not get the attention of many researchers as concrete cracks due to absence of
realistic data for Al model development. In the past, nondestructive methodology such as
attaching piezoelectric material [16] with drone used to determine the crack in concrete

bridge.
On the other hand, a crack detection algorithm using canny edge detector has been

developed by the authors of [17, 18] which detected cracks with less than 0.15 mm error
to ground truth. The problem with the conventional image-based algorithm is that it needs
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user input threshold value which may change depending on the quality of the dataset.
Dorafshan et al. [19] also revealed that the deep learning models such as AlexNet
outperformed different types of edge detector for detecting concrete cracks. A deep
convolution neural network hasbeen developed by the authors of [20] to detectand localize
crack in concrete bridges from images. Again, the authors of [12] developed an automated
process using deep learning models for detecting, localizing, and mapping of five different
types of defects in concrete bridges and reported overall 85.3% accuracy. The application
of different artificial intelligence models was not limited to corrosion and crack detection
in the infrastructures. The authors of [19] used image based deep learning algorithm such
as Hough transformation to estimate the looseness of the bolted joints. On the other hand,
the authors [20] developed a deep learning model with images collected from the real steel
infrastructure showing different modes of rotation of loosened bolts. However, the authors
of [21] generated a deep learning convolution neural network from the signal collected

from the existing nondestructive method such as ultrasonic wave propagation.

2.3 Real time defect detection using UAS

The use of UAS for detection of structural defects is not novel, but very few solutions
utilize an approach that provides Al defect detection support in real time. Experimental
research using UAS for detecting delamination, corrosion, cracks on photovoltaics (PV)
modules used in power plants was carried out by the authors of [22]. A thermal camera
mounted on UAS (PLP-610) was used to collect the images and processed them on the

ground using different image-based algorithms.

Eschmann et al. [23] implemented an eight-rotor unmanned aerial vehicle (UAV) with a
payload equipped with different sensors such as gyroscopes, accelerometers, and a
barometric altitude sensor to do the aerial survey as a part of regular inspections of the
buildings. In addition, Chen et al. [13] used a high-definition camera mounted on six-axis
UAYV platform with some intelligent features such as obstacle avoidance, positioning, and
stable hover to detect corrosion in large steel structures.

A novelapproachisintroducedin[24], whereina UAS solution is proposed thatcan mount

onto a wall, climb along its flat surface, and identify cracks. While this method would not

be practical on ancillary structures which are usually not flat, the paper discusses real-time
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use of deep learning models to support the identification of cracks. The crack detection

models were proven successful at the short range, as lighting was not a significant factor.

An method, that is entirely autonomous, to inspect bridges for common defects is proposed
and partially demonstrated in [25]. The autonomous flight was scaled to a limited,
controlled environment. Al Models for the defect types of steel corrosion, steel crack, and
loosened bolt were demonstrated to run simultaneously with high accuracy.

2.4 Choice of UAV

The choice of a UAV to use in an imaging application depends on several factors. The
payload weight should be estimated based on the intended application. The UAV to carry
the payload should have a payload capacity greater than the expected payload weight, with
adequate margin (at least 20% margin). The margin is to account for any other weight that
may get added to the payload as the design process progresses. Another factor that may
limit the choice of UAV is the adaptability of the flight control system. Some drone
manufacturers may protect the Intellectual Property (IP) of the UAV and flight control
system, which requires the control of the payload system to be separate from that of the
UAV. This adds to the weight and complexity of the entire system. The UAV’s stability
system should be evaluated to determine if the sensor payload can be equipped onto it.
Many UAVs include a gimbal system that maintains a stable camera angle, even as the
drone changes its positioning. Utilizing the UAV’s built-in gimbal system for the payload
provides a stable mounting to ensure no motion blur in images. Table 2 provides a
comparison of different UAVs in terms of the number of rotors, payload weight, diameter,
and maximum flight time.

Table 2: UAV Comparison

Name Rotors Payload Diameter Max Flight
Time*
DJI Mavic Air 2 4 300g 30.2 cm 34 min
DJI Phantom 4 Pro 4 500g 35cm 30 min
Yuneec Typhoon H 6 1800g 52 cm 25 min
DJI Matrice 600 Pro 6 6000g 113.3 cm 32 min
Freefly Alta 6 6 6800g 112.6 cm 45 min

Page |6



2.5 Wireless Communication

The sensor data must be sent in real-time to the ground control station (GCS) at a high
speed due to the high number and size of frames. To achieve this, a long-range and high-

speed communication system is needed for the UAV to communicate with the GCS.

\In many UAV systems, real-time data is transmitted from the UAV to the GCS with alive
feed of the camera equipped on the UAV. The payload designer for such project should
consider using the existing communication system between the GCS and the UAV, which
can reduce the weight and power consumption. Also, the range of the communication
network will remain consistent.

In the review of communication systems used by similar UAV imaging applications, two
techniques are primarily used. The first technique is to have the sensor data sent on the
same network as used by the Flight Control System. The second technique is to imp lement
a communication network separate from the Flight Control System. This has no risk of
slowing the flight controls. However, this technique likely adds to the weight and power
consumption of the UAV payload. Both disadvantages reduce the flight time of the UAV.
As previously mentioned, reduced flight time may resultinlonger mission time as the UAV

may need to be charged.

2.6 Smart Graphical User Interface

The mission control and data displaying system form the user-interface level in the UAV
system, wherein the mission commands and instructions are conveyed to the UAV and data
captured using the payload sensors are processed, analyzed, and displayed at the user end
in form of a GUI based application. The display systemserves as a visual interface between
the UAV and the GCS staff. In the realm of autonomous systems, smart GUI-based user

interfaces have long played an important role.

There are some research efforts aiming to provide ways to connect UAVs and the cloud
infrastructure forming a smarter way of interfacing between the UAV and the ground
control. Lin et al. [25] put forward a solution of integrating the cloud service of Google

Earth with the UAV. This was done using transmission of data to a MySQL database using
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an android phone. The user used a web browser to access the database's UAV information.
UAVs were controled using a specific flight plan defined in the database via a waypoint.
Similarly, a multirobot control and communication architecture with a user interface were
developed by the authors of [26].

2.7 Cameras

The cameras deployed onthe payload were selected to satisfy three key requirements. First,
they must be lightweight so they could be used on a variety of UAV platforms. Second,
there must be visual and thermal cameras in the payload to augment detection. Live
streaming with both cameras allow for real-time imaging to assist the inspector in defect
detection. The third requirement is that the sensors must provide high resolution images to
the Al models. Any unwanted blur can affect the ability of the Al models to identify
defects. Also, the live streaming is best with high quality images to ensure the inspector
knows the areas of interest to run the defect detection models.

The selected visual cameraisan Arducam HQ, with a resolution of12.3 MP. The resolution
was dropped to 1980 * 1080 pixels to improve the processing time of the neural networks
running in real time. The sensor alone has a low focal point with no lens, meaning the
sensor alone would only focus on a close object. Also, the aperture is wide, meaning that
the depth of field it can focus on would be very limited. To improve focal length and depth
of field, an external lens is added to the Arducam to ensure the camera can focus on many
objects simultaneously ata moderate distance. This lens adds weight and complexity to the
design but the resulting camera is lighter and less expensive than other drone-mounted
cameras, with similar image quality.

The selected thermal camera is a longwave infrared (LWIR) thermal camera. This camera
usesa 12 pm pitch Vanadium Oxide (VOx) uncooled detector capable of capturing 640 *
512 pixels. For the live streaming of the sensors, GStreamer was used. It is an open-source

pipeline-based multimedia framework.

2.8 Data Transfer

To transmit a large amount of data with a high throughput, an IEEE 802.11ac Wi-Fi
network is established to connect the Jetson and ground control station. The Wi-Fi is
established by a router transmitting at the 5 GHz (433 Mbps) band. Secure Shell (SSH)
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protocol is used for cryptography of the data to preventspoofing. The payload uses a static
IP address, so Wi-Fi password protection should be implemented as needed for securing
the system. The Transmission Control Protocol (TCP) Server-Client architecture was
implemented for the robust transfer of data from payloadto the GCS. The payload’sJetson
microcomputer acts as the server, reserving a port number to listen for commands. The
GCS acts as the client, sending various commands to Jetson. When the computer sends a
command to Jetson, the Jetson runs the appropriate processing, which is often a still image

capture, stream request, or Al model(s) to be run on the latest image.

3 Graphical User Interface

The control of the payloadis handled by a Graphical User Interface (GUI) run on a Ground
Station laptop. This GUI is written in C# language, developed in Microsoft Visual Studio
2022. The GUI is compiled as an executable so that most computers can run it easily. A
user guide is provided as part of the GUI to assist the inspector in using each function of
the GUI with the payload, as well as technical details on the back-end processing.

The GUI has several functions:

1. Command the payload to do the following:
a. Capture still images from visual or thermal cameras
b. Start live stream from visual or thermal cameras
c. Run Al models on the most recent image
Crop images for faster processing of areas of interest
Show the location of defects with bounding boxes (as determined by Al models)
Allow inspector to modify bounding boxes
Store images with embedded bounding boxes in a repository
Provide the details of background processes to the inspector

AR ol A

Below image shows the main screen of the GUI and the sections that comprise it.
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_S(an Live Streaming - Visual
Visual Image Capture

Start Live: Streaming - Themal
Themal Image Capture

Camera Controls

Image Display

\ Run Processes

Processing Results

Image View

Defect Data

Post-Processing \

Processes Output

Figure 3: GUI Main Screen

GUI Sections and Descriptions:

e Image Display
o Displays still images
o Allows for modification of defect locations after defect detection processes are run
e Processes Output
o Describes the steps and output of back-end processing to assist inspector
e Camera Controls
o Starts visual or thermal live streaming
o Captures visual or thermal still images
e Run Processes
o Initiates defect detection processes
o The number of defect types can be selected
e Processing Results
o Switches between results of defect processes (if multiple are run)
e Image View
o Switches between different image types (often used before processes are run). The
image types include Visual, Thermal, and Cropped Visual.
e Defect Data Post-Processing
o Finalizes boxes from defect processes before storage to repository
o Stores image(s) to repository
o Trains defect processing models to improve accuracy
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The cropping function allows for a smaller area of interest within an image to go through
the selected Al model(s). This will run through the models faster than the whole image,

while also providing a result in the repository focused on the defect alone.

Figure 4: GUI Crop Function

Figure 5 shows the repository interface of the GUIL The bounding boxes that were selected
by the inspector are embedded in the image. The repository functionality allows for quick
and easy storage of the captured images during an imaging mission. This is crucial so that
the inspector has an archive of all the areas that were deemed as potentially containinga
defect. During a mission, the inspector can quickly capture an image of a target area with
potential defect locations, store it in a repository, then move to the next location. After the
mission, the inspector can review the repository to determine the next maintenance steps
to take.
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Figure 5: GUI Repository
3.1.1 Interactive Defect Identification on GUI

The Interactive GUI functionality works the same for both Corrosion and Crack defects.
The only difference is that the Corrosion defects are identified by blue boxes, while Crack
defects are identified by red boxes. When the Defect Detection process for Corrosion
and/or Crack are run on an image, the Interactive GUI divides the image into an 8 x 4 grid
of sub-images to prepare for processing. When the processingis complete, the Interactive
GUI places a box around each sub-image that contains the defect(s). The box is not centered
around the defect, meaning the defect could be anywhere within the box. If the inspector
disagrees with the identified defect locations, they can change the selected boxes before
storing the image in the repository. They can de-select a sub-image that they believe does
not contain a defect, and the box will be removed. Also, they can select a sub-image that
they believe does contain a defect that was not identified by the process. This process of

de-selecting or selecting is as simple as clicking on the location within the GUL

The Interactive GUI for Bolt Issues works differently than Crack and Corrosion. When the
Defect Detection process for Bolt Issues is run on the current image, the Interactive GUI
identifies the exact location of each Bolt Issue, without having to divide the image into
sub-images. Yellow boundingboxes are drawn around each identified defect, with numbers
listed on the top left corner of each box. The size of the boxes varies, depending on the
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sizes of the defective areas. When the processingis complete, the bounding boxes appear
on the screen, superimposed on the image. The inspector has the option to remove any of
the bounding boxes placed by the model. Then, the inspector can click and drag anywhere
within the displayed image to place a new boundingbox, if they determine a bolt defect is
in that location. The boxes can be any size and location, as long as it is within the image.
The bounding boxes changed by the operator are saved when toggling between different
image views. This allows the operator to evaluate multiple defect types within one image

and modify multiple sets of defect locations before saving to the repository.

3.1.2 Back-end GUI Processes

There were many challenges in designing the GUI to include user-friendly features. Many
of these were due to limitations with C# as a programing language. For one, the main C#
form needs the images from the payload to be displayed with bounding boxes overlaid on
top to identify defects. To accomplish this with the most optimal processing speed, the
image is redrawn into the Image Display every time a bounding box is removed. To
elaborate further, the bounding boxes shown in the Image Display area are not separate
elements of the GUIL, but rather static shapes drawn onto the image. This method was
deemed to be less intensive on the PC’s memory and processing power than alternative
methods of either resaving the image every time or creating new GUI elements that are
placed in front of the image.

There are many files within the folder structure of the GUI that are python or batch files to
support the GUL The GUI calls these files multiple times during normal operation. These
files are mainly used for interaction with the payload or for image modification. The reason
that these are external to the GUI is due to limitations of the C# language for inter-agent
communication and image processing.

To ensure the inspectorinteraction with the boxes is saved when switching from one defect
type to another, different approaches are taken for different defects. For Crack and
Corrosion, an array named “boxarray” defines the box locations. This array is 3
dimensional, with the first two dimensions corresponding to the x and y coordinates of the
box, respectively. The 3™ dimension is simply used to switch between Crack and
Corrosion. To preserve the bounding boxes used for Bolt defects, the box locations and

size is saved in a text file in the project folder.
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3.2 Al model Architecture

3.2.1 Corrosion detection model

The development of an Artificial Intelligence model for detecting corrosion required
several steps. Overall data generation, data augmentation, data annotation, model training,
and testing are the basic phases of the model development. AlexNet, the robust image
classification model, was used for detecting corrosion. The architecture of AlexNet has
been proposed by Krizhevsky [29] which has 8 main layers. There are 25 sublayersinthese
8 main layers which are trainable. This is a pre-trained deep convolution neural network
on imageNet dataset. Figure 6 depicts the backbone of the AlexNet in terms of five
convolution layers(C1-C5),seven layers (ReLU1-ReLU7) with rectified linear unit(ReLU)
to solve the issue with non-linearity, two normalization layers (Norm1-Norm?2), three fully
connectedlayers ((FC1-FC3). Among these three fully connected layers the last layer has
been modified so that the model can work as binary classifier with the help of sigmoid

function at the last layer.
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Figure 6: The architecture of AlexNet [29]

Two types of sensors have been used for data generation. The Specification of both the
sensors are mentioned in Table 3. The data generation process is completed in two phases;

mobile phone has been used in the first phase and UAS camera later.

Table 3: Camera Comparison

Type of the device Samsung Galaxy M30 UAS camera
Resolution 13 Megapixels 7860 x 4320 Megapixels
Aperture size f-stop; 1/1.9. f-stop; £/2.8 - /11
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Using images from different sensors in model development helped to test and rectify the
dependence of the model on the sensor’s quality. Approximately 300 images from the
existing signal posts with an average height of 6.7m(22ft) and a cantilever arm length of
6.1-6.7m(20-22ft) have been collected by the research team by using the mobile phone
from 9.53 am to 11.53 am on May 17, 2021. The sizes of the images were 2311 pixels X
4128 pixels [30]. In the second phase, approximately 200 images are collected by UAS
camera from the in-service ancillary structures.

Data augmentation library such as albumentation from python has been applied on the most
representative images with corrosion to augment the data set. The model development
starts with 4000 images. At present, it is augmented to 9257 images after testing model
performances for different images (Figure 7).
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Ferformace Metrics Value
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Mo: of images

Figure 7: Performance evaluation of model by varying the number of images

TPR (true positive rate) represents the percentage of the correctly detected corrosion
images. Similarly, TNR (true negative rate) depicts how many non-corroded images have
been detected accurately. Higher value of both TPR and TNR value work as indication of
less false detection. All these parameters were determined consideringthe training labels

as ground truth.

After dataaugmentation all the images have been labelled with corrosion (WC) and without
corrosion (WOC) by the research team. The total number of images with corrosion is 4600
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and 4657 for without corrosion. To confirm the robustness of the model the without
corrosion images consists of diverse background such as cars, sky, trees including the
images from the sound part of the steel structures.

The model has been trained with 9254 images and tested with the images collected by the
research team from the internet and the combined dataset comprises images of different

SENSors.

3.2.2 Crack detection model

The dataset utilized in this study for AlexNet consisted of 250 images sourced from prior
research studies [31,32], in addition to an extra 30 images obtained from real-world
ancillary structures. This dataset was assembled to encompass images from various
sections of the structures for a comprehensive examination of cracks. It was split into two
annotated sets based on the types of detection performed by deep convolutional neural
networks (DCNN). The AlexNet annotated dataset comprised 200 images displaying
fatigue cracks and 250 sub-images without cracks, all with dimensions of 256 by 256
pixels. To augment the training dataset, various data enhancement methods were applied,
including adjustments to color, brightness, and crack orientation, resulting in an expanded
dataset of 1400 sub-images. Furthermore, realistic images of fatigue cracks were overlaid
onto images of undamaged and in-service ancillary structures, boosting the dataset's size
to 1500 sub-images. To enhance subsets related to cracks, a combination of random under-
sampling and data augmentation was used.

To create a more diverse training dataset, some images of ancillary structures, often coated
in silver or blue anticorrosion paint alongside red, had their colors modified to silver or
blue. Additionally, since corrosion is a frequent occurrence in steel structures, the colors
of selectimages were altered to mimic corroded plates or galvanized steel plates. This color
transformation was carried outusing methods outlined in Reference [ 33], wherein the color
of galvanized steel plates, both corroded and intact, served as the target color. Images from
in-field structures were considered input objects, and the process described in Reference
[34] was employed to adjust the color of raw images to match the color of images in the
target dataset, thus enlarging the trainingset. Figure. 8 illustrates the original images, target

images, and the outcomes of the color transformation algorithm.
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d) e) f)

Figure 8: Data augmentation.

a) raw images, b) raw image with corrosion c) fused image, d) raw images, e) galvanized steel,
f) fused images

Acquiring images of structures with cracks can be challenging as they are often promptly
repaired to prevent structural risks. To address this, a limited number of images depicting
ancillary structures with and without fatigue cracks were blended into a color algorithm.
This multi-faceted data augmentation approach was employed to generate lifelike images
of ancillary structures with fatigue cracks, further expanding the dataset to 1500 sub-
images. Figure 9 illustrates the overlaying of images with and without cracks to create

authentic images of ancillary structures with fatigue cracks [33].

g) h) 1

Figure 9: Examples of using a superimposed approach to augment data, a) Original image with
a crack, b) Original image without crack, c) a superimposed crack, d) raw image from Reference
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[32], e) Original image without crack, f) superimposed crack g) Original image from Reference
[34], h) Original image without crack, i) a superimposed crack at structure’s [31].
Rotation was employed as a data augmentation technique to boost the size of the crack
dataset, a method previously demonstrated to be effective in research. Images were
uniformly rotated at 45° and 135° angles, as depicted in Figure 10, to augment the training

set.

Figure 10: Data augmentation, a) raw image, b) rotated by 45 compared to original image, c)
rotated by 90 compared to original image [1].

It is the most challengingpart of crack detection to create a datasetbased on limited images
from steel structures and run AlexNet as a deep learning algorithm in real time to detect
cracks as defects. The accuracy rate of the model can be improved by adding more data
from real structures since only two ancillary structures with fatigue crack (HM 0029-
138.442 and HM 0029-137.911) exhibited during inspection of this project. We have
already taken images of these two structures and have added them to the main datasets.
However, the number of images from real structures should increase to have better defect
detections. The testing images captured by the drone ‘s camera was used to test algorithms.
These images were divided into 1,100 smaller segments. Subsequently, trained Alex Net,
alsoreferred to as the Crack Model, was applied to categorize these images into two distinct
categories (sub images with cracks and sub images without cracks).

The results generated by AlexNet models were recorded in separate Excel files for crack
and corrosion, organized according to image names and their corresponding labels.
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Figure 11: AlexNet architecture in paper [5].

3.2.3 Bolt Detection Method

The dataset comprises approximately 1,000 images depicting absent bolts or nuts in
ancillary structures within laboratory settings across diverse locations, including North
Dakota and Baltimore in the USA, as well as Istanbul in Turkey.

Faster R-CNN (FRCNN) is a variant of Region-Based Convolutional Neural Networks
(RCNN), belongingto the family of machine learningmodels designed for object detection
in images. The RCNN approach involved producing a series of bounding boxes as output,
each encapsulating instances of missing bolts as objects. The RCNN model was
specifically trained to identify and localize defective bolts within these bounding boxes
during testing. Implementation of the model was carried out using Python, where the
defected bolts were placed within the bounding boxes, and predictions for bolt or nut
defects in the test set were made.
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Figure 12: Bolt Detection Method

3.3 Data Annotation
Bounding boxes were used to annotate missing bolt area. Figure 13 displays an example of
annotated missing bolts with bounding box (shown a rectangular shape)

Figure 13: Structure with a missing bolt, shown by bonding box annotation
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3.4 Data Augmentation

Our objective was to enhance the resilience of object detection algorithms through the
implementation of data augmentation techniques. Various augmentation methods,
including noise addition, color adjustments, blurring, and a diverse set of augmentations
were employed to augment the dataset's image sizes. This approach aimed not only to
improve the model's ability to detectobjects butalso to diversify the dataset by introducing
variations through augmentation techniques.

Figure 14 shows the performance for some images in the testingset. This image is trickier
compared to other image since the color of bolt is black and different from trainset
(Figurel4c), blur image (Figurel4b), hidden by structure (Figure14f), and not visible
enough (Figure 14b).

il A i 08 002 006 OO 00S 00 O
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Figure 14: FRCNN result. a) multiple missing bolt output, b) multiple loosen bolt output, c)
black loosen bolt, d) missing bolt, e) loosen nut, f) loosened nut.
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4 Payload System Design

The System Block Diagram is shown in Figure 15. The left side of the diagram is for the
hardware/software located on the ground, while the right side is for the hardware/software
located in the air, on the UAV.
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Stock UAV Controller = Live Feed
v & e
" W gO\
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Feed e Stock UAV > Stock UAV Flight o Stock UAV Flight
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Gimbal Controls . Gimbal (Payload
Mount)

Ground PC

Payload Caontrols Wi-Fi Router »  Wi-Fi Antenna > Payload Computer Sensor Payload
< : Defect Detection )

Image Processing Thermal Sensor

Gul

F Y
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Figure 15: System Block Diagram

The payload described in this document works separately from the stock UAV hardware
and software. The only interactionis the control ofthe gimbal thatholds the payload should
be commanded by the UAV flight controller. The method for accomplishing this varies,
dependingon the UAV controller, but usually is a simple setting in the software provided
by the flight controller. Alternatively, the gimbal can be configured to be controlled by the
Ground PC, using QGroundControl software on the laptop establishinga link to the gimbal
through the Jetson running MavProxy software. In this case, the Jetson receives gimbal
commands from the laptop and transfers the commands to the gimbal.

The payload’s computer (Jetson Xavier NX) runs the Al models to detect defects within
the captured images on command. The data and commands between the payload computer
and Ground PC are transmitted over a Wi-Fi network established by a travel router (IEEE
802.11ac).
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A Ground PC is used to run the GUI and store images in a repository. The Dell Latitude

5430 was selected, as it is rugged to survive any moisture or physical stress from operating

outdoors. The chosen PC’s 16GB RAM and i5 processor has been able to effectively run

the GUI with minimal latency or crashing.

4.1 Payload Equipment

Table 4 below lists the equipment used in the payload and the Ground Station. The features

of the equipment as well as the purpose that each piece fulfills is included.

Table 4: Payload Equipment

Temperature rating: -40 °C to
+80 °C

Low power consumption around
500 mW

Type Name Features Purpose
Laptop Dell Semi-rugged  with  enhanced It runs the Smart Defection
Latitude battery life Detection Interface
5430 Intel Core i5 1145G7 /2.6 GHz The router is powered using
1 TB SSD NVMe Class 40 an USB connected to the
16GB, 2x8GB, 3200 MHz DDR4 laptop
RAM Its hosts the Al training
processes for defect
detections
Microcomputer | Nvidia CUDA-enabled parallel Itshost the Al test processes
Jetson NX computing capability for defect detections
384 NVIDIA CUDA® Cores, 48 The two sensors are
Tensor Cores, 6 Carmel ARM controlled using this
CPUs system-on-module
Delivers up to 14 TOPs for Al Establishes a connectivity
applications in 10W power with the laptop when both in
utilization same network
Visual Camera | Arducam Optical Format: 1/2.3" Provides live visual camera
with Lens 477P HQ Maximum still resolution: 4056 x stream
Camera 3040 Captures visual image for
Board 30fps@Full 12.3MP Al processing
Supports NVIDIA Argus Camera Lens wide aperture allows
Lens: plugin for H264 encoding, JPEG for very deep depth of field
snapshots
Arducam C-Mount Lens:
C-Mount 16mm Focal Length
Lens Manual Focus and Aperture
Adjustment, F1.4 to F16
Thermal Sensor | Teledyne Resolution: 640x512 Provides live  thermal
FLIR 12 pm pixel pitch VOx camera stream
Boson microbolometer

Captures thermal image

Page |23




e  For rugged construction
Gimbal Gremsy Carries payload up to 400g Allows stabilization of the sensors to
Mio Lightweight prevent motion blur
Router GL.iNet e AC VPN Travel Router Establishes a cryptographic Wi-Fi
GL-AR750 e 300Mbps(2.4GHz) + network connection between the
433Mbps(5GHz) Wi-Fi microcomputer and the laptop
Battery HRB 48 It is needed for powering up the
Lipo microcomputer and the gimbal
Battery during flight
Battery Charger | Hobby Fans For charging the batteries in
B6 Balance balanced charged mode for short-
Charger circuit, overcharge, overcurrent and
overheat protection.

4.2 Power Consumption

Table 5 lists the power consumption ofthe electronic devices located on the payload. Jetson

power consumption was captured as the worst-case during operation.

Table 5: Power Consumption

Component Max Power Consumption | Voltage Range
(W)

Jetson 12 9-19

Visual Camera 1 (from USB)

Thermal Camera 0.5 (from USB)

Gimbal 8.4 14-52

Total 21.9

The payload voltage ranges allowed for either a 14.8V or 18.5V LiPo battery. For

reference, each LiPo battery cell operates at 3.7V, so adding LiPo cells in series allows for

voltage values at multiples of 3.7V. Several batteries were assessed based on weight,

capacity, and voltage. Table 6 lists these parameters, and a ranking was provided based on

the most ideal parameters. Ultimately,a low weight battery was selected that will still allow

for 121 minutes of operation. This time is most often beyond the amount of time that most

UAVs can fly, so this operating time is acceptable.

Table 6. Battery Comparison
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Voltage Capacity Minutes of | Weight (g) | Price Final Rank
(mAh) Operation
14.8 3000 121.6 297 $32 1
18.5 4000 202.7 495 $54 2
14.8 4000 162.2 403 $45 3
14.8 5200 210.8 470 $42 4
14.8 3300 133.8 318 $36 5
14.8 5000 202.7 492 $54 6
18.5 5000 2534 608 $72 7

4.3 Custom Modeled Payload Fastening System

To carry the required payload on the DJI Inspire 2 Drone, attachments needed to be
fabricated to safely fasten the payload to the drone and not hinder operation. To do this,
prototypes were designed and modeled on AutoCAD, imported into GrabCAD Print for
formatting, then transferred via USB drive to the StrataSys F370 composite 3D printer to
be printedusing ABS M30 material. Details on the F370 and ABS M30 material properties
are included in the appendix.

One of the prototypes housed the cameras. It was designed to be fully enclosed and to
minimize camera movement and foreign material contamination while the drone is
operating. A classic half-hinged clipping design was employed to be able to accomplish
this. Additional attributes of the design include cord accessibility for both cameras while
the box is still closed and multiple mounting locations to mount the box to the gimbal.
Below are images of this design. Annotated drawings are included in Appendix A, Section
2.
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Figure 17: Prototype Housing Inside

Another prototype helped fasten the power supply and onboard computer. The goal of this
design was to allow plenty of air flow so the power supply and computer would not
overheat. Additionally, it was important to make sure this design did not interfere with any
of the drone’s collision detection and monitoring systems. Unfortunately, the detection
system for under the drone is partially impeded by the design due to limitations in cable

reach, overall drone stability (or affecting the Center of Gravity too severely), and the
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awkward size and geometry of the Jetson and power supply. A three-piece mounting
bracket was designed to be able to fasten the Jetson/Power supply housing to the drone.
They were designed to maximize stability with the limited cross section area available due
to the drone’s design. Figure 18 is an image of the designs. Annotated drawings are
included in Appendix A, Section 2.

Figure 18: Gimbal Adapter 1

Finally, an adapter was also needed to be able to attach the gimbal to the drone since the
gimbal used was not designed by DJI, thus preventing the proper attachment interface
required. To accomplish this, 5 pieces were required. Two of them were the main gimbal
housing that is meant to hold the gimbal in place on the drone while allowing free
movement of the gimbal and access to each of the required ports on the gimbal. The other
three pieces were designed to mount the gimbal and gimbal housing to the damper that is
on the drone. The goal was to make this as stable as possible while still allowing
functionality of the damper to provide further stabilization to the cameras while the drone
is in flight. Below is an image of the pieces for the design. Annotated drawings are
included in Appendix A, Section 2.
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Figure 19: Gimbal Adapter 2

After insertingall components into their respective housingand attachingthemto the drone

with their respective brackets, the final full design is assembled (Figure 20).

BRI
AL YA LR AN

Figure 20: UAV Integration
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4.4 Validation
4.4.1 System Validation in Controlled Environment

A demo filed test has been simulated at the Civil Engineering High Bay facility, University
of North Dakota. A corroded steel plate has been clamped on a column to replicate the
scenario in the field. In addition to this, bolts were also attached to the column without nuts
to simulate the defective bolts in the real steel structures. The lighting condition was not as
natural as the sunlight, and this might lead the model to misdetection in case of corrosion.
The inspection demo with the results is reported here in Figure 21-22. One the other hand,
the low lighting condition made missing boltdetection challengingwithoutuse of Al model
(Figure 22b).

()
Figure 21 (a)& (b): Pre-flight condition checking at Lab

(a) (b)
Figure 22 (a)& (b): Loosen Bolt and Corrosion detection by the AI models
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4.4.2 System Validation with Field Test

The outdoor defect detection mission with the payload mounted on UAS has been
completed. In this section, an example of model performance in defect detection was
reported for the corrosion model only, since the inspected pole did not have any fatigue
crack or boltissues. The detection results are reported in this section (Figures 23-27). Out
of 32 split sub-images, 8 truly have corrosion. The corrosion model correctly detected 5
sub images as corroded but falsely indicated 3 images as uncorroded. The reason for this
misdetection could be the ratio of corroded (approximately 20%) and background
(approximately 80%). The inspector was able to correct the miss detections using GUI.
This demonstrated the successful interactive functionality of the GUI, which allowed the
inspector to correct the model detection output.

The time required for the processing functions of the system is mentioned in Table 7.
The battery voltages were taken before and after the test. Because the voltage of a LiPo
battery needs to be above 3.2V per cell, the operator must ensure that the voltage does not
dropbelow thatvalue. The payload ran at approximately full load for about 15 minutes and
depleted 0.22v. Therefore, the payload depleted the battery at about 14.7mV per minute.
Assuming a startingcharge of4.1v and an acceptable margin of 0.1v about 3.2v, the battery
should be limited to only running the payload long enough to drop 0.8v. This equates to
about 54 minutes, but due to battery depletion overtime and adding more margin, this limit
should be reduced to 45 minutes. Because it takes setup time before and after the test, the
time that the payload runs should be tracked carefully to ensure it doesn’t run longer than
45 minutes.

3526 Gateway Dr
Grand Forka, Nocth Dakata

Figure 23:Inspection Location, 3526 Gateway Drive, Grand Forks, ND
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(b)

Figure 24: (a) &(b) Pre-flight condition checking

© (d)

Figure 25: (c) &(d) Inspection team during the outdoor flight
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8 Payload Control

Camera Options

Start Live Streaming - Visual
Visual Image Capture
Start Live Streaming - Themal
Themal Image Capture

Results

11:47 AM

< == D Search [ = o ; Q ﬁ @ “_ E_; Ao 4/30/2024
(a)
Predicted
TRUE | FALSE
TRUE 5 3
Actual | FALSE 3 21
(b)

Figure 26: (a) Corrosion detection results (b) confusion matrix

- 1B

(a) (b)
Figure 27: Saved image in repository after completing the inspection (a) Corrosion (b) Crack
& defective bolt

Table 7: Flight Datasheet
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Mission Phase Parameter Measurement
Pre-Flight Payload Battery Voltage 4.09 v per cell

Flight Visual Image Capture Process Time 9 second (Approximate)
Flight Corrosion Process Time 23.846 seconds

Flight Crack Process Time 26.185 seconds

Flight Bolt Process Time 31.749 seconds

Flight All process 83 seconds

Post-Flight Payload Battery Voltage 3.87 v per cell

5. Limitation and future work

Although the developed payload-equipped UAS improves on the current inspection
system, it has some limitations. The UAS can be operated only when the environmental
conditions such as position of cloud, presence of wind condition etc. satisfy the FAA
recommendation. This requirement may hinder the inspection in North Dakota where the

environmental conditions change abruptly.

All the Al models are developed with enough datasets. However, the datasets were not
diversified as many defective poles were already replaced or over-coated. For example, the
corrosion model was developed with the images collected from Grand Forks and Fargo.
Most of the inspected poles painted yellow in color. So, 90% of images with corrosion are
with yellow color structure. Training of the model on the specific color may be one of
causes of misdetection. However, the provision of retraining will give the opportunity to
update the model to be more robust with new annotated data from the field.

The processing times reported for the Al models were longer than expected. This is mostly
due to the remote processing of these models occurring at the microcomputer. This could
be mitigated by the operator limiting the number of areas of interest on which models are
run for inspection. Also, the operator may consider movingto a new area of interest while
the previous area is being evaluated by the Al models. The live streaming shown on the
GUI can occur while the models are running. Another limitation of the payload is that the

housingtakes time to assemble and disassemble. A more robust design may be considered
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if these times are an issue for the inspection. Future work could improve the processing
time by re-architecting the system to run the models on the laptop. If this would occur, a
laptop with greater processing power would be more optimal.
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5 User Guide

5.1 Introduction

Before beginning this User Guide, it is recommended to understand the hardware and

software components and their integration. This section also will guide through the initial

steps to get started with the smart inspection process.

5.2 Hardware Components

Table 8: Hardware Components

Type

Name

Features

Purpose

Laptop

Dell Latitude 5430

Semi-rugged with
enhanced battery life
Intel Core i5 1145G7
/2.6 GHz

1 TB SSD NVMe Class
40

16GB, 2x8GB, 3200
MHz DDR4 RAM

-Runs the GUI for
Smart Defect Detection
-Powers the router
-Hosts the Al training
processes for defect
detections

Microcomputer

Nvidia Jetson NX

CUDA-enabled parallel
computing capability

384 NVIDIA CUDA®
Cores, 48 Tensor Cores,
6 Carmel ARM CPUs

Delivers up to 14 TOPs
for Al applications in
10W power utilization

-Hosts Al processes for
defect detection
-Controls the payload
cameras

-Establishes
connectivity with the
laptop when both in
same network

Visual Camera with
Lens

Arducam 477P HQ
Camera Board

Arducam C-
Mount Lens

Lens:

Optical Format: 1/2.3"
Maximum still
resolution: 4056 x 3040
30fps@Full 12.3MP

Supports NVIDIA
Argus Camera plugn

for H264 encoding
JPEG snapshots
C-Mount Lens:

16mm Focal Length
Manual Focus and
Aperture  Adjustment,
F1.4 to F16

-Provides live visual
camera stream
-Captures visual image
for Al processing
-Lens’ wide aperture
allows for very deep
depth of field

Thermal Camera

Teledyne FLIR Boson

Resolution: 640x512
12 pm pixel pitch VOx
microbolometer

Temperature rating: -40
°C to +80 °C

-Provides live thermal
camera stream
-Captures
image

thermal
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Low power
consumption around

500 mW
For rugged construction
Gimbal Gremsy Mio Payload upto 400g -Allows stabilization of
Lightweight the sensors to prevent
motion blur
Router GL.iNet GL-AR750 AC VPN Travel Router | -Establishes a

300Mbps(2.4GHz) + | cryptographic ~ Wi-Fi
433Mbps(5GHz) Wi-Fi | network connection
between the
microcomputer and the
laptop

Battery HRB 4S Lipo Battery -Powers microcomputer
and the gimbal during

flight

Battery Charger Hobby Fans B6 -Charges the batteries in
Balance Charger balanced charged mode
for short-circuit,
overcharge, overcurrent
and overheat protection.

Figure 29 shows the hardware components and how they are interconnected. Please refer to
the respective hardware documentation for detailed systemrequirements and compatibility

information.

e \\

Wi-Fi Router a ice Power
Ground PC payload pat Payload Computer DeV'CeC%mmands Sensor Payload

Device pr & Comm@ Defect Detection Data.
Payload Controls EE» System Visual Sensor
—
Thermal Sensor

Image Repository Ccomman 3
o
m COmma"dsﬁ 096201- Device power

GUI

Image Processing

; Splitter
Gimbal Cable Payload Battery

3000mAh 60C

Figure 28: System Connections
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5.3 Software Components

Table 9 lists the software components used on the laptop and microcomputer. Please refer

to the respective software documentation for detailed system requirements and

compatibility information.

Table 9: Sofiware Components

Segment Name Version Usage
GStreamer 1.0 1.20.2 -Pipeline-based
GStreamer 1.0 multimedia framework
(Development Files) -Used for live video
streaming and image
transfer
gTuneDesktop 1.4.9.1 -Configures the gimbal
Laptop Python 3.9.7 -Controls peripheral
features of the GUI
Visual Studio 17.3.5 -Platform on which the
Community 2022 GUI is developed
C# 10.0 -Core code of the GUI
.Net Framework 4.7.2 -Framework on which
the GUI runs
Microcomputer Python n/a -Core code of the
Jetson

5.4 System Architecture

The System Block Diagram is shown below. The left side of the diagram is for the

hardware/software located on the ground, while the right side is for the hardware/software

located in the air, on the UAV.
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On Ground ° In Air Stock UAV

Camera

Stock UAV Controller L] Live Feed
" 3 ‘\630 o®
Stock UAV Camera . s
Feed > Stock UAV »  Stock UAV Flight | stock UAV Flight
< . Transceiver < Computer i Equipment

Flight Controls

4 Directional Controls

Gimbal Controls " Gimbal (Payload
Mount)
Ground PC .
Wi-Fi Router P e > Payload Computer Sensor Payload
st < : < Defect Detection .
Image Repository Image Processing Thermal Sensor

Table 10: System Block Diagram

The payload described in this document works separately from the stock UAV hardware
and software. The only interaction is the control of the gimbal that holds the payload
should be commanded by the UAV flight controller. The method for accomplishing this
varies, depending on the UAV controller, but usually is a simple setting in the software
provided by the flight controller.

The payload’s computer (Jetson Xavier NX) contains the Al models to detect defects
within the captured images on command. The data and commands between the payload
computer and Ground PC are transmitted over a Wi-Fi network established by a travel
router (IEEE 802.11ac).

A Ground PC is used to run the GUI and store images in a repository. The PC was selected

to be rugged to survive any moisture or physical stress from operating outdoors.

5.5 Startup Instructions

Before initiating the inspection, it is crucial to follow a series of steps to ensure a seamless
and successful operation. These steps will help set up the necessary connections and
configurations for controlling and monitoring the drone's payload, which is equipped with
advanced defect detection capabilities.
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Power on the laptop and make sure it remains on a stable surface to ensure smooth
operation.

Establish a physical connection between the laptop and the router to enable data transfer.
Allow the router to activate the 5G WIFI network (green light should be on), which is
essential for seamless communication between devices.

Connect the laptop to the ' NDDOT _ROUTER 5G' network, providing internet access for
further actions.

& WiFi &
Z3 NDDOT_ROUTER 5G

Figure 29: Wi-Fi network

Ensure the UAS has met all the pre- and post-flight requirements (Follow general operation
and safety guidelines recommended by FAA).

Attach the gimbal, which is the mechanism responsible for stabilizing and controlling the
payload, to the drone securely.

Power up both the microcomputer and the gimbal using the designated payload batteries to
activate their functionalities.

Once the drone is airborne and stable, launch the gTuneDesktop app on the laptop.

Verify gimbal connectivity and controls using the app controls.

Open the Smart Defect Detection Interface app (GUI) on the laptop, specifically designed
for controlling the payload's defect detection capabilities.

Payload App : Apgf€ation for payload interfa@g
Train Mode ‘ pp to train payload models
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Figure 30: GUI Launch Page

e Navigate to the Payload Control page within the app's interface to access the relevant
controls

Camera Options

Start Live Streaming - Visual
u

Visual Image Capture

i
Start Live Streaming - Themal
| Themal image Capture [N

Visual Image || Themal image
Cropped Visual Image

[
Connection al

Figure 31: Payload Control Page

Click on the 'Connection Check' button within the Payload Control page. A successful ping would
indicate that the connection between the laptop and the payload is established and ready for
inspection.

Ping to the payload successful.

OK

Figure 32: Payload Ping

5.6 Operation Instruction

Page |43



5.6.1 Functionalities of the GUI

5.6.1.1 Initial Launch page

This page is the initial launch page to the GUI. The initial launch page gives access to the
payload control application and desktop application.

Payload App : Apgl€ation for payload interfad
Train Modg ‘ pp to train payload models

Figure 33: GUI Launch Page

Table 11: GUI Launch Page Description

Button Name Button Functionality

Payload App -Launches the Payload Control application for defect
detection

Train Models -Launches the Train Models application

Close Program -Closes the GUI application

5.6.1.2 Payload Control Page

The Payload Control page functions as a primary hub, giving access to all the tools and
needes to successfully control the payload for detecting defects in the target structure. The

purpose of this section of the user guide is to give an understanding of the Payload Control
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capabilities. Section 5.6.1.6 will guide through the step-by-step process for using the
Payload Control features effectively during the field inspections.

Camera Options
Statt Live Streaming - Visual

Visual Image Capture

_Slaﬂ Live Streaming - Themmal

Camera Controls

Image Display

\ Run Processes\

Processing Results

Image View

e
Cropped Visual Insge

Defect Data
(e ]
Connection Clear
Check

Defect Data

Post-Processing \

Processes Output

Figure 34: Payload Control Page Details

The Payload Control page consists of the following sections:

e (Camera Controls:
This section gives access to use the live streaming and image capture feature using the

visual and thermal camera.

e Run Processes:
This section can run the preferred Al model or models for detecting various defects. With

a focus on enhancingsafety and reliability, the available Al models cater specifically to the
identification of corrosion, cracks, and bolt issues. The user has the flexibility to selectany
one Al process or a combination of processes. This gives the ability to modify the fault
detection strategy to fit the particular traits of the area of ancillary structure under study.
Utilize Run Process button drop-down flexible option to tailor the defect detection
procedure using the Al process or processes that work best for the mission. The Run
Process button has the following drop-down options:
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Run Process

B 2l Defects M Comosion
B Crack B EBokt

Table 12: Run Process Options

Tick Button Name Tick Button Functionality

All Defects -Runs all the Al processes

Corrosion -Runs the Al process for detecting corrosion defects
Crack -Runs the Al process for detecting crack defects
Bolt -Runs the Al process for detecting bolt issue defects

The user can choose any one or combination of Al processes they wish to run.

e Processing Results
This section gives access to the output of all the Al processes. The user can also toggle

between the output screen for multiple Al process runs. This section provides the real-time
and interactive capability to examine the predictions made by the Al processes. The output
of the AI processes will be imaged with the defected regions marked on the image.
Additionally, the user can add missed regions of defects and edit incorrectly categorized
regions of defects. This serves two purposes: it allows the user to use their expertise to
store accurate images to the repository and it also provides accurate retraining feedback for
the Al processes. The output image generated by each Al process is color coded based on
the defect type. The color codes are as following:
Corrosion: Blue Crack: Red Bolt Issue: Yellow

e Corrosion and Crack Al Processes
The Al processes for Corrosion and Crack use a similar method of defect inspection and

annotation. These Al processes mark the entire image into small rectangular tiles of fixed
dimensions. The tiles with defected region of interests are slightly color-shifted. This is for
better and easier identification of the defected regions. The color shift is necessary in the
event that a large region of tiles is flagged for defect and the tile outline alone becomes
ambiguous between adjacent boxes. These tiles are interactive, as the user can check and
uncheck them depending on their expertise that the Al process falsely classified or missed
classifying the defect.
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Came ns
Start Live Visual
Visual Image Capture

Start Live Streaming - Themal

Defect Data

Connection
Check

Figure 35: Crack Processing Feedback
e Bolt Issue Al Process
The Al process for bolt issues is used to identify loosening and missing bolt faults. By
using Al, a rectangular region of interest is drawn around any missing or loosened bolts.
The bolt or bolt hole being inspected determines the size of these rectangular regions of
interest. The user can draw, remove and redraw the areas of interest depending on their
expertise that the Al process falsely classified or missed classifying the fault.
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Camera Options
Start Live Streaming - Visual
Visual Image Capture
ve -
u

.
Start Live Streaming - Themal

Run Process v

Results

\

Figure 36: Bolt Processing Feedback
e Image View

This section grants access to view the latest image captured by the visual and thermal
cameras, along with the ability to view the latest masked image. The buttons provided
under this section offer adaptability, allowing the user to set the visual image or re-crop it
for rerunning Al processes on the existing visual image. With just a click, the user can
examine the visual and thermal images, analyze the masked image for better marking of
defect region of interests, and effortlessly manipulate the visual image for optimized Al
analysis. Utilizing the strength of these capabilities on the Payload Control page will
simplify and improve the ancillary structure defect detection process.

e Miscellaneous
The Miscellaneous section offers a collection of graphical user interface centric control

options, providing convenient functionalities for enhanced user experience. Within this
section, the user can find options such as saving output images, accessing the repository,
performing connection checks with the payload, and clearingall selections. These will not
only provide easy preservation of the generated images for future reference or
documentation purposes but also will provide quick access to a centralized repository. The
Connection Check button is a crucial functionality and must be done below every flight.
This will allow the user to verify the connectivity status with the payload microcomputer

and the laptop, ensuring a stable and reliable connection. Lastly, the Clear All Selections
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button conveniently resets any selected settings or parameters, enabling a fresh start or
facilitating a streamlined workflow. These graphical user interface-centric controls

enhance the overall usability and efficiency within the application.

Table 13: Miscellaneous GUI Buttons

Button Name Button Functionality

Start Live Streaming - Visual -Starts live streaming from visual camera

Visual Image Capture -Takes a picture from the visual camera

Start Live Streaming - Thermal -Starts live streaming from thermal camera

Thermal Image Capture -Takes a picture from the thermal camera

Run Process -Chooses the Al process/processes to run

Corrosion -Visualizes the output of the Al model for
corrosion defect

Crack -Visualizes the output of the Al model for crack
defect

Bolt Issue -Visualizes the output of the Al model for bolt
issue defect

Visual Image -Visualizes the last captured image from the visual
camera

Thermal Image -Visualizes the last captured image from the
thermal camera

Cropped Visual Image -Visualizes the last cropped visual image

Finalize Boxes -Saves the final inspector annotated and approved
selection of the defect output shown on the screen

Repository -Saves the final annotated output shown on the
screen to a repository

Connection Check -Checks whether a connection between the laptop
and the microcomputer on the payload has been
established

Clear -Clears the current process run and set all the
values to default

Close Program -Closes the GUI application and turn off the
microcomputer on the payload

Previous Menu -Goes back to the Initial Launch page

5.6.1.3 Image Masking page

The Image Masking page provides the functionality to crop aspecific area of interest within
the visual image offering a high level of control and customization. This subsequently
becomes the focus for applying the Al process/processes of choice. This feature offers
flexibility inrunning Al processes,as it enables users to focus on a particularregion within

the image for analysis. By creating the mask, the user can define and isolate the desired
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area, fine-tune, and optimize the analysis allowing for targeted and precise application of
Al algorithms. This capability enhances the efficiency and accuracy of Al processingby

concentrating computational resources on the specific region of interest.

Figure 37: Image Masking Page
Button Name Button Functionality
Save Selection -Saves the cropped selection of the visual image

5.6.1.4 Repository Page

The Repository Page is specifically designed to provide inspectors with a visual overview
of pastinspections,showcasingimages of three types of detected defects: corrosion, cracks,
andboltissues. This page serves as a centralized platformto catalogand organize the visual
evidence of these defects detected after the Al processing and appropriate annotations
given by the inspectors. The user may quickly access and analyze the detected defects for
additional investigation and documentation using this page. The repository allows for
efficient retrieval and comparison of defect images, enabling the user to track the
progression of corrosion, monitor crack growth, and assess the severity of bolt issues over

time. In addition, the page also features a save button that allows the user to save the
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displayed image. This will allow the user to easily attain and utilize the defect images for

documentation, reporting, or further analysis outside the software.

al Image Repository - O X
| Frevious Men |
Image 1

Image 2

Image 3

Image 4 - ..

too . . -
Next

Previous

Image &

Select Defect Type [Comosion -] ZoemOut [ ZoomIn Save As PNG

| .

Figure 38: Repository Page

The user can choose the type of defect repository they wish to view using the Select Defect

Type drop down options. The Select Defect Type has the following drop-down options:

Sobect Dofect Tyoe ||
L e L )

ok
Eeoll et s

Figure 39: Select Defect Type

Option Name Option Functionality
Corrosion To view the defects from corrosion repository
Crack To view the defects from crack repository

| Button Name | Button Functionality
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Previous -Views the previous image in the selected defect
repository

Next -Views the next image in the selected defect
repository

Save As PNG -Saves the image as PNG in the download folder

Previous Menu -Goes back to the Payload Control page

5.6.1.5 AI Process Retraining Control page

Figure 40: Retraining Page

Button Name Button Functionality

Image Dataset -Optimizes the image dataset for the selected Al
process for retraining

Train Model -Trains the selected Al process

Transfer to Payload -Transfers the trained Al process model file to the
microcomputer on the payload

Connection Check -Checks whether a connection between the laptop
and the microcomputer on the payload has been
established

Previous Menu -Goes back to the Initial Launch page

Close Program -Closes the GUI application and turn off the
microcomputer on the payload

The user can choose the type of Al process they wish to train using the Select Defect Type
drop down options. The Select Defect Type has the following drop-down options:
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Figure 41: Select Defect Type

Option Name Option Functionality

Corrosion -Runs the train Al process for detecting corrosion
defects

Crack -Runs the train Al process for detecting crack
defects

Bolt -Runs the train Al process for detecting bolt issue
defects

5.6.1.6 Step-by-step Instructions for Inspection Mission

1. On the launch screen of the GUI, click Payload App to start.

Payload App : Apgh€ation for payload interfade
Train ModetS”App to train payload models
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2. Start live streaming from visual and/or thermal cameras by clicking the
corresponding buttons shown below.
i. Place the new popup window(s) containing live streams to a preferred
location on the screen.

Camera Controls

Start Live Streaming - Visual

Visual Image Capture

Start Live Streaming - Themal

Run Process v

Results
o

3. Start the flight.
4. Any area of interest on the target structure can have a still image captured from
either the visual or thermal camera. Click the corresponding button shown below.
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5.

Camera Controls

If the inspector suspects one or more of the three defect categories (Corrosion,
Crack, or Bolt Issue) may be present, they can run a defect detection process to
assist. Dropping downthe ‘Run Process’ box results in the box shown below, where
one or more of the defect detection processes can be checked to run. Afterselecting
the processes to run, click ‘Run Process’.
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Camera Controls

Start Live Streaming - Visual
Visual Image Capture

Start Live Streaming - Themal

Run Process ~

B Al Defects W Comosion
B Crack B Bot

6. The processing may take several minutes to run. The steps and output of the
processing can be shown in the Processes box.

7. When the processing is complete, the GUI will display the areas of the image that
contain the selected defects. The GUI provides interactive controls to add or remove
defects, if the inspector determines the processes are incorrect. These controls are
explained in Section 5.6.1.7 for Corrosion and Crack defects and Section 5.6.1.8
for Bolt defects.

8. Once the defects are finalized, the images can be saved to a repository for future
review. Section 5.6.1.4 explains saving the images to a repository.

9. These steps can be repeated for all other areas of interest in the target structure.

5.6.1.7 Interactive functionality for Corrosion and Crack defects

The Interactive GUI functionality works the same for both Corrosion and Crack defects.
The only difference is Corrosion defects are identified by blue boxes, while Crack defects
are identified by red boxes.

When the Defect Detection process for Corrosion and/or Crack are run on the current
image, the Interactive GUI will divide the image intoan 8 x 4 grid of sub-imagesto prepare
for processing. When the processing is complete, the Interactive GUI will place a box
around each sub-image that contains the defect(s). If the inspector disagrees with the
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identified defect locations, they can change the selected boxes before storing the image in
the repository. They can de-select a sub-image that they believe doesn’t contain a defect,
and the box will be removed. Also, they can select a sub-image that they believe does
contain a defect that wasn’t identified by the process.

An example is provided in Figures 35 and 36 below. In Figure 35, the Corrosion process
identified defects in the following sub-image locations (column, row coordinates from top
left): (5,1), (6,1), (7,1), (8,1), (4,2), (1,3), (3,3), (4.,3), (5,3), (2,4), (6,4), (7,4), and (8,4).
However, Figure 36 shows the result of the inspector disagreeing with the process. They
de-selected sub-images (5,1),(6,1), and (8,4) meaning the model falsely selected these sub-
images as defective. The inspectoralso selected sub-images (4,1),(3,2), (5,2), etc. meaning
the process falsely did not identify these sub-images as defective.

O X

Camera Options

Start Live Streaming - Visual

Start Live Streaming - Thermal

Visual image § Themal Image
Cropped Visual Image

Figure 42: Image after Corrosion Process
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Camera Options
Start Live Streaming - Visual

_\Asua! Image Capture
Start Live Streaming - Thermal

-

Defect Data

Connection
Check

Figure 43: Image Afier Corrosion Process and Inspector Interaction

When the inspectoris finished with modifying the defect boxes on the image, they cansave
the image to the repository, which will include any changes made by the inspector. The
inspector can repeat the process of modifying the boxes of the current image and saving to

repository.
5.6.1.8 Interactive functionality for Bolt defects

The Interactive GUI for Bolt Issues works differently than Crack and Corrosion. When the
Defect Detection process for Bolt Issues is run on the current image, the Interactive GUI
will identify the exact location of each Bolt Issue, without havingto divide the image into
sub-images. Yellow bounding boxes will be drawn around each identified defect, with
numbers listed on the top left corner of each box. The size of the boxes vary, depending on
the sizes of the defective areas. When the processingis complete, the pop-up box shown

below appears.
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Bolt Output Quality Check

0 Do you wish to delete any of the bounding boxes?

e 1 w

If any defects appear to be incorrect, the inspector can click yes, otherwise they can click
no. If yes, is clicked, the pop-up box below appears. The inspector enters in the box

numbers to be deleted, separated by a comma (example 1,2).

Box Deletion X
Enter the box numbers you wish to delete. Add a
comma after each box number
Cancel

[E]

The bounding boxes for Bolt Issues can’t be deleted after the pop-up is closed. The Bolt
Issues process would need to be re-run to get to this pop-up again to delete the boxes. After
these boxes are closed. The inspector can draw boxes around any areas that they determine
to be a Bolt Issue. The boxes can be any size and can be drawn in any direction. The
inspector just needs to click and hold in one corner of the desired box, then drag the mouse
to the opposite corner of the box. After each new box is drawn, the pop-up box below is
shown. The inspector can click Yes to save the box, or no to delete the box.

Bolt Output Quality Check

o Do you like the drawn box?

Yes No

When the inspectoris finished with modifying the defectboxes on the image, they cansave
the image to the repository, which will include any changes made by the inspector. The
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inspector can repeat the process of modifying the boxes of the current image and saving to

repository. An example image with identified Bolt defects is shown below.

5.6.2

Camera Options
Start Live Streaming - Visual

Start Live Streaming - Themal
Themal Image Capture

T : Image View

Cropped Visual image

Figure 44: Bolt Defect Box Feedback

Step-by-step Instructions for Model Retraining

On the launch screen of the GUI, click ‘Train Models’ button to start.

On the Train Model page, choose the type of defect training model to train using the Select
Defect Type drop down options.

Choose Corrosion or Crack.

Click on the ‘Image Dataset’ button to view the message for choosing the training dataset.
Inspector  needs to  choose the  images from  wc/woc folder
(c:/Project Parent/Model training/corrosion dataset or
c:/Project Parent/Model training/crack dataset) for retraining. The selected images
should be stored in the respective training dataset. For example for corrosion :
C:\Project Parent\Model Training\corrosion\Corrosion\Submission nov_2\Dataset\train\
WC or WOC

For crack:
C:\Project Parent\Model Training\crack\Pythoncode\caltec256subset\train\a(WC) or
b(WOC)

Click on the ‘Train model’ button to start the training. A black consol window will appear
which will highlight the progress of the training. Please do not turn off the consol window
or lock the laptop screen. It will take nearly 2 hours to complete the training for corrosion
and around 45 mins for crack.

Once the black console window automatically disappears, it means the model has been
trained successfully. Corrosion model will be training for 50 epochs and Crack model will
be training for 30 epochs.
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e Now click on the ‘Previous Menu’ button to return to the launch page of the GUI.

e Click on the ‘Payload App’ button within the app's interface.

e C(lick on the 'Connection Check' button on the Payload Control page. A successful ping
would indicate that the connection between the laptop and the payload is established and
ready for file transfer.

e Now click on the ‘Previous Menu’ button to return to the launch page of the GUI.

e Click on the ‘Train Models’ button within the app's interface.

e Reselect the defect model type from the Select Defect Type drop down options

e Click on Transfer to Payload button. This button takes a backup of the existing model
prediction file in the Jetson board and transfers the newly generated model file to its
necessary folder in the Jetson board.

6 Technical Section

The following sections in the User Guide describe the design features of the Payload and
GUIL These are not crucial to operating the system. If troubleshooting is necessary, these

sections are a good resource to understand the system design.

6.1 Microcomputer wireless connectivity

To ensure a seamless connection, the WiFi network named ‘NDDOT ROUTER 5G’ is
given the highest priority level of 999. This prioritization means that when multiple
networks are available, the device will prioritize connecting to ‘NDDOT ROUTER 5G’
above others. Consequently, as soon as the microcomputer boots up, it will promptly
connect to the “‘NDDOT_ROUTER 5G’* WiFi network without requiring any manual
intervention. This streamlined setup ensures a convenient and reliable connection between
the microcomputer and the laptop, facilitating efficient operation and maximizing
productivity during the inspection process. If the router changed to factory setting, it can
be reset again to NDDOT ROUTER _5G and the key is “password”. The password for the

laptop and the jetson are “nddot™ and “password” respectively.

6.2 Auto connectivity between laptop and the microcomputer

SSH password less login is used here to establish a password less and synchronous mode
of communication between the laptop and the microcomputer. It is an effective
authentication method for tasks like file synchronization, and server access. This method

relies on a pair of public and private keys. It is set up by firstly generatinga key pair using
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the ssh-keygen command. Then, after creatingan SSH directory on the server, public keys
are uploaded to the server using ssh-copy-id command on Linux client or scp command on
Windows client. Next, connections are tested after configuring the SSH agent permissions
for the .ssh directory and the authorized keys file. Once completed, a passphrase-free
passwordless connection to the server is established, enhancing security and convenience.
Here both the Windows OS on the laptop and the Linux OS on the microcomputer act are
set with the passwordless SSH login. In the Windows system the .ss/ directory is located
at “C:Users\NDDOT” and in the microcomputer system the.ss/ directory is located under
the root directory.

** If the router goes back to the factory setting, please check docs.gk-inet.comfor resetting
the password. The security key is “password”.

6.3 Form 1 Overview

Form 1 is the main form of the GUI that the inspector will use. It commands the payload,
shows the images from the payload,and includes interactive controls that the inspector can
use to modify and store defect data. The back-end code files are Forml.cs and

Forml.Designer.cs.

Forml.Designer.cs provides the settings for all the GUI elements (buttons and text boxes
for example). Most of the lines in this file were automatically generated by Visual Studio,

so not much annotation is present.

Forml.cs hasall the other code for handlinginputs and outputs of the GUI. All the methods
that end with “bat” in their name are used for running the .bat files, which are most
commonly used for interfacingwith the payload’s sensors or defect detection Al processes.
A large section of Forml.cs code is used for handlingthe interaction between the inspector
and the GUI for modification of defect data. The three-dimensional array “boxarray” is
modified frequently and is used for saving the crack and corrosion defect loc ation to ensure
the information is retained when the GUI is changing the currently displayed image. When
the inspector changes the image to be displayed on the GUI, the new image is re-printed
on the GUI screen and any defect boxes are re-drawn based on the saved data within the
“boxarray” array. The integer “defectenum” is for enumerating between different defect

types as follows:

Page |62



e (0= Corrosion
e 1 =Crack
e 2=Bolt

The methods that end with “Repo” are used for running the .bat files to prepare different
images for storage in the repository (as explained in the section on Form 5). If the image

contains defect boxes, the images saved in the repository will include those boxes.

6.4 Form 4 Overview

Form 4 is the form that allows the inspector to crop a captured image to run a reduced
subsetthrough the Al processes. The Form takes the currentimage and allows the inspector
to click and drag their mouse over the regions that they would like to crop. The form will
prompt them upon creating the crop if they like it or would like to redo the cropping. To
allow cohesion with the Crack and Corrosion models, the crop extends the crop region to
cover the 8 x 4 grid of boxes used for Crack and Corrosion defect classification. This form

does not require many lines of code, and thus is able to run and close quickly when called.

6.5 GStreamer

GStreamer is an open-source multimedia framework used to create versatile multimedia
applications. By constructing pipelines that connect different plugins, developers can
process and transmit audio and video data in a flexible and modular manner. With sup port
for a wide range of multimedia formats and protocols, GStreamer 1is highly customizable
and extensible, making it a popular choice in the Linux ecosystem. Its extensive
documentation, tutorials, and community support empower developers to leverage its
capabilities for creating diverse multimedia applications and solutions.

GStreamer can be used to create both the server and client components of a streaming
system. The server-side component typically involves designing a GStreamer pipeline that
captures audio and video from a source (e.g., camera), encodes the data, and streams it over
a network protocol such as RTP (Real-time Transport Protocol) or RTSP (Real-Time
Streaming Protocol). This pipeline can be set up on a server machine. On the client-side,
another GStreamer pipeline is designed to receive the streamed audio and video data from
the server. This pipeline decodes the received data and can be configured to play it back,

display it on a screen, or process it further.

Page |63



Please refer to the Gstreamer official documentation for detailed system requirements and
compatibility information at https://gstreamer.freedesktop.org/.

6.6 Visual image capture

The visual image capture using the Arducam 477P HQ camerais executed usingthe python
file *Visual Capture.py’. The code captures an image using the camera device and saves it
with a timestamp in a designated folder. It then performs some operations on the captured
image, such as copyingit to another folder, renaming it, resizing it, and saving the resized
version. The shell script ‘Image Save Visual.sh’ is used to execute the
“Visual Capture.py’.

The breakdown of the code executed on the microcomputer is as follows:

1. The c¢md variable contains the command to capture an image using the Arducam477P HQ

camera.

2. Itinitially stores the image with the size, width= 1920 and height = 1080, and format of
jpeg.

3. The os.system() function is used to execute the entire command.

4. The image 1s saved n the path

‘home/nddot/IMAGE_CAPTURES/E_ CON_CAM PIC/Pic_1.jpg’

5. The current timestamp is obtained using datetime.datetime.now() and formatted as a string
with microsecond precision.

6. The captured image is renamed using os.rename() to include the timestamp in the filename.

7. The glob module is used to find all the JPEG files in the folder specified by folder path.
The max() function is then used to find the most recently created file based on the creation
time os.path.getctime().

8. The most recently created file is copied to the
‘/home/nddot/IMAGE _CAPTURES/RUN _FOLDER’ directory using shutil.copy().

9. Similar to step 4, the most recently created  file in  the
‘/home/nddot/IMAGE CAPTURES/RUN FOLDER’ directory is found using glob and
max().

10. The file is renamed to /.jpg in the ‘/home/nddot/IMAGE CAPTURES/RUN FOLDER’
directory using os.rename().

11. The image is loaded using cv2.imread().

12. The heightl and widthl variables are calculated to obtain dimensions that are multiples of

227.
13. The image is resized using cv2.resize() with the calculated dimensions.
14. The resized image is saved as C.jpg n the

‘/home/nddot/IMAGE CAPTURES/RUN FOLDER’ directory using cv2.imwrite().

The images are numbered according to the date and time to consider the latest image for

processing. The images are also rescaled to the multiple of 227 * 227 as the Al models
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used for detecting corrosion and crack have 227 * 227 as the input shape of the image. The
image file named C.jpg located inthe ‘/home/nddot/IMAGE CAPTURES/RUN _FOLDER’
directory serves as the input image for running various Al models. It acts as a base image
that undergoes processing either in its entirety or after being cropped depending on the
inspector specific requirements of the Al models. As the Al models require inputimages
to work with, C.jpg must be regularly updated with the latest content to ensure accurate
and up-to-date results.

6.7 Thermal image capture

The thermal image capture using the Teledyne FLIR Boson camera is executed using the
pythonfile ‘thermal capturepy’.The code capturesan image using the camera device and
saves it with a timestamp in a designated folder. It then performs some operations on the
captured image, such as copying it to another folder, renaming it, resizing it, and saving
the resized version. The shell script ‘Image Save Thermal.sh’ is used to execute the
‘thermal Capture.py’.

The breakdown of the code executed on the microcomputer is as follows:

1. The c¢md variable contains the command to capture an image using the Teledyne FLIR
Boson camera.

2. Itinitially stores the image with the size, width= 640 and height =512, and format of 1420.

3. ‘jpengc’ gstreamer command is used to command the thermal image to jpg format.

4. The os.system() function is used to execute the entire command.

5. The image is saved in the path ‘home/nddot/IMAGE _CAPTURES/THERMAL/Pic_1.jpg’

6. The current timestamp is obtained using datetime.datetime.now() and formatted as a string
with microsecond precision.

7. The captured image is renamed using os.rename() to include the timestamp in the filename.

8. The glob module is used to find all the JPEG files in the folder specified by folder path.
The max() function is then used to find the most recently created file based on the creation
time os.path.getctime().

9. The most recently created file is copied to the
‘/home/nddot/IMAGE CAPTURES/RUN FOLDER’ directory using shutil.copy().

10. Similar to step 4, the most recently created  file in  the
‘/home/nddot/IMAGE CAPTURES/RUN FOLDER’ directory is found using glob and
max().

11. The file is renamed to 2.jpg in the ‘/home/nddot/IMAGE CAPTURES/RUN FOLDER’
directory using os.rename().

The images are numbered according to the date and time to consider the latest image for

processing.
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6.8 Visual image live streaming

The smart GUI interface on the laptop displays the live stream captured by the Arducam

477P HQ camera, which is connected to a microcomputer. The camera captures visual data,

and this real-time video feed is transmitted to the laptop for viewing. For availing the live

streaming capabilities, GStreamer has been used.
The breakdown ofthe serverend bash script — “/ive_test.sh’ executed onthe microcomputer

is as follows:

l.
2.

3.

kill command is used to kill any process that is using port 5010.

The gst command is used to launch the gst-launch-1.0 utility with a pipeline for video
streaming.

It uses the v4/2src element to capture video from the specified camera device.

The image/jpeg format is selected with a width of 1920 and height of 1080, and a framerate
of 15 frames per second.

The tcpserversink element is used to stream the video over TCP, specifying the
microcomputer (host) [P address as 192.168.8.139 and the port as 5010.

The breakdown of the client end Windows batch script — “gstreamer client.bat’ executed

on the laptop is as follows:

l.

2.

[98)

timeout command is used to pause the script execution for 4 seconds without displaying
any output on the console.

As the GStreamer binaries are installed n the location
‘C:\gstreamer\l.0\msve _x86 64\bin’, the cd command is used to change the current
directory to that directory.

The gst command is used to launch the gst-launch-1.0 utility with a GStreamer pipeline.
It uses the tcpclientsrc element to receive video from the microcomputer (TCP server)
running at 192.168.8.139 and port 5010.

The received video is then decoded using decodebin and displayed using d3dvideosink,
which renders the video using Direct3D on Windows.

The script prints the current time, waits for 4 seconds, and then prints the time again. It

then changes the directory to the GStreamer installation directory and launches a

GStreamer pipeline to receive and display video from a remote TCP server.

Note: Ensuring thatthe IP addresses and ports specified in the scripts are appropriate under
the “NDDOT ROUTER 5G’ static IP network setup.

6.9 Thermal image live streaming
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The smart GUI interface on the laptop displays the live stream captured by the Teledyne
FLIR Boson camera, which is connected toa microcomputer. The camera captures thermal
data, and this real-time video feed is transmitted to the laptop for viewing. For availing the
live streaming capabilities, GStreamer has been used.

The breakdown of the server end bash script — ‘live_test thermal.sh’ executed on the

microcomputer is as follows:

1. kill command is used to kill any process that is using ports 5123 and 5021.

2. The gst command is used to launch the gst-launch-1.0 utility with a pipeline for video
streaming.

3. It uses the v4/2src element to capture video from the specified camera device.

4. The /420 format is selected with a width of 640 and height of 512.

5. The ftcpserversink element is used to stream the video over TCP, specifying the
microcomputer (host) IP address as 192.168.8.139 and the port as 5123.

The breakdown of the client end Windows batch script — ‘gstreamer_client_thermal.bat’
executed on the laptop is as follows:

1. timeout command is used to pause the script execution for 4 seconds without displaying
any output on the console.

2. As the GStreamer binaries are installed in the location

‘C:\gstreamer\l.0\msve _x86 64\bin’, the cd command is used to change the current

directory to that directory.

The gst command is used to launch the gst-launch-1.0 utility with a GStreamer pipeline.

4. 1t uses the fcpclientsrc element to receive video from the microcomputer (TCP server)
running at 192.168.8.139 and port 5123.

5. The received video is then decoded using decodebin and displayed using d3dvideosink,
which renders the video using Direct3D on Windows.

(98]

The script prints the current time, waits for 4 seconds, and then prints the time again. It
then changes the directory to the GStreamer installation directory and launches a
GStreamer pipeline to receive and display video from a remote TCP server.

Note: Ensuring thatthe IP addresses and ports specified in the scripts are appropriate under
the “‘NDDOT ROUTER 5G’ static IP network setup.

6.10 Data transfer from payload and laptop

For transferringimages, text and other necessary files in between the Linux systemrunning
on the microcomputer and Windows system running on the laptop, socket programming
based on python is used. In socket programming for server and client data transfer, two

separate programs are created. One acts as the server,and the otheras the client. The server
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establishes a connection to a particular port on a local IP address and waits for client
connections. The serverinitiates a connection with the clientonce it connects. On the other
hand, the clientstarts a connection to the serverby giving it the IP ad dress and portnumber.
The client sends data to the server after the connection is established, and the server
receives and processes that data. Data is often sent as streams of bytes during this client-
server conversation. Data is converted from the client into bytes and transmitted over the
network to the server, which interprets and utilizes the data in accordance. The similar
procedure is used by the server to deliver data back to the client.

Python's socket module offers the tools needed to construct and maintain sockets for
network communication, making it simple to design client-server data transfer. The
breakdown of the server-end visual image transfer script — ‘Server.py’ executed on the
microcomputer is as follows:

1. The host variable is defined to specify the IP address of the server. In this case, it is set to
192.168.8.139.

2. The port variable is defined toreserve a specific port number on which the server will listen
for incoming connections. It is set to 5020.

3. The socket is bound to the specified IP address and port number using the bind() method:
s.bind((host, port)).

4. The socket starts listening for incoming client connections with a maximum backlog of 5
pending connections using the /isten() method: s.listen(5).

5. The script enters an infinite loop (while True) to continuously handle incoming
connections.

6. When a client connects, the accept() method is called, which returns a new socket
representing the connection and the client's address.

7. The server receives data from the client using conn.recv(1024) command, where 1024
specifies the maximum number of bytes to receive at once.

8. The server opens the file 'C.jpg’ in binary read mode (7b’).

9. The server reads the file in chunks of 1024 bytes using fread(1024).

10. The server sends each chunk to the client using conn.send(l).

11. The loop continues until the entire file is sent.

12. The file is closed after sending the entire content.

13. The connection with the client is closed using conn.close().

14. The script exits the loop and finishes execution.

The breakdown of the client-end visual image transfer script — *Client Visual Camera.py’
executed on the laptop is as follows:

1. The script creates a client-side socket object using socket.socket(), which is used for
establishing connections with the server.

2. The host variable is defined to specify the I[P address of the server towhich the client wants
to connect. In this case, it is set to 192.168.8.139.
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The port variable is defined to reserve a specific port number on which the client will
attempt to connect to the server. It is set to 5020.

The client initiates a connection to the server using s.connect((host, port)), where the IP
address and port are provided as a tuple to the connect() method. This step establishes the
connection with the server.

The client opens a file Visual Img jpg' in binary write mode (‘wb’) on the client-side to

save the data received from the server.

a

The client enters a loop to receive data from the server in chunks.

7. The client receives data from the server in chunks of 1024 bytes using s.recv(1024). This
method call blocks until data is received.

8. Ifthereceived datais empty (i.e., the end of the file is reached), the loop breaks, indicating
the end of data transmission.

9. The client writes the received data to the file using fwrite(data).

10. The client closes the file after receiving the entire content.

11. The client closes the connection with the server using s.close(), terminating the
communication between the client and server.

Below is the list of python files that indicate a server-client socket connection between the

laptop and the microcomputer.

Table 14: Python Socket Files

Server/Client
Executable File S /Client Jetson: J E tabl Server/Client Specific Port p
on Laptop erveriidien Laptop: L F.):ecu able Python File Name 0 urpose
ile
Image Save
Server J ) - — | Server.py To transfer
) Visualsh
Visual Img.bat - - - 5020 | the captured
- . Visual Image | Client Visual Camer . .
Client L L - - visual image.
_Client.bat a.py
Image Save To  transfer
Server J ge_Save_ Server Thermal.py
Thermal Imgba Thermal.sh 5021 the captured
t . Thermal Ima | Client Thermal Cam thermal
Client L T - - )
ge Client.bat | era.py image.
Corrosion_Pr -Transfers the
ocessing.sh Server Corrosion_Aft excel file
Server J .
Corrosion_Se | er Run.py generated
Corrosion.bat rver.bat (L) 5024 | after running
] the Al model
. Corrosion Cl1 ) ) )
Client L . - Client_Corrosion.py for corrosion
ient.bat .
detection
Crack_ Proces -Transfers the
sing.sh Server Crack After excel file
Crack.bat Server J 5023
Crack Server | Run.py generated
Jbat (L) after running
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the Al |
Crack_Client. ¢ Al mode

Client L bat (L) Client_Crack.py for . crack
detection
Bolt_Processi -Transfers the
ng.sh Server Bolt After R excel file
Server J
Bolt_Server.b | un.py generated
Bolt.bat at (L) 5022 | after running
] the Al model
) Bolt Client.b ) ]
Client L . - Client_Bolt.py for bolt issue
a detection
Crop Visual [ Crop_ Visual Server.p
Server L -Transfers the
Server.bat y
. - cropped
Crop Visual Im Crop_Visual .
- - . . 5050 | image
gbat . Transfer.sh Client_Crop_Visualp .
Client J ) - - coordinate
Crop_Visual |y .
. text file
Client.bat (L)

6.11 Image Splitting at Microcomputer End

The image C.jpg is used for running the Al models. The corrosion and crack Al models are
based on the AlexNet architecture. The AlexNet model requires input images of size
227x227 pixels. To achieve this, python scripts are used to split the original C,jpg image
into multiple smaller sub-images, each of size 227x227 pixels, which are thenused as input
for the Al models. This approach allows the Al models to analyze different sections of the
original image individually, making it suitable for classification.

Below are the python files and the respective image path being the split images are placed.

Table 15: Python Splitting Files

Al Model File Name Sub Image Path
Corrosion split jetson_ 2.py /home/nddot/Run/Submission_n
- ov_2/Dataset/test/
L. /home/nddot/Run/crack/datanew
Crack split_jetson.py

c/test/

A brief overview of the two split scripts is given below:

1. The script introduces the infile variable to represent the path of the input image file C.jpg
located at “home/nddot/IMAGE CAPTURES/RUN FOLDER/C jpg’.

2. The variable savedir is defined, pointing to the directory where the split sub-images will
be stored.

Page |70



3. The start_pos variable is initialized with the starting position (top-left corner) for cropping
the image. It is set to (0, 0).

4. To definethe size of the sub-images, the cropped image size variable is used, with a width
and height of 227 pixels each.

5. The script opens the image using the Image.open() method from the PIL library and assigns
it to the variable img].

6. The width and height of the original image are obtained using the size attribute of the img/
object.

7. A frame num variable is initialized to keep track of the cropped sub-images, starting from
0.

8. Utilizing nested loops, the script iterates through the original image, cropping it into
smaller sections measuring 227x227 pixels using the img!.crop() method.

9. For each split sub-image, a filename is created based on the frame number and the original
image filename without the extension.

10. Each split sub-image is saved in the specified directory using the crop.save() method, with
filenames like C001.png, C002.png, and so on, according to the frame number.

11. After saving each sub-image, the frame number is incremented to ensure unique filenames
for subsequent sub-images.

6.12 Image Cropping at Microcomputer End

In the smart interface, inspectors are provided with the tool to crop the captured images
from the visual sensor. Image cropping allows the inspector to define a specific area of
interest within the captured image. This area could contain the targeted area of defect that
would require classification.

The advantage of this cropping feature is two-fold:

Faster Processing: Instead of analyzingthe entire image, the system only needs to process
the cropped area. This saves time and speeds up the inspection process.

Efficient Resource Use: When running Al models or performing analyses, the system
allocates computing resources more effectively since it's working with a smaller, focused
image area.

Following the inspector's image cropping, the precise cropping coordinates, encompassing
the top left and bottom right points, are transferred from the laptop to the microcomputer
to initiate processing. These coordinates  are stored in the
/home/nddot/IMAGE_CAPTURES/VISUAL CROP/1.tx" file.

The breakdown ofthe crop script— “Crop _Cor to img.py’ executed onthe microcomputer
is as follows:

1. The script starts by importing necessary libraries: glob, os, re (for regular expressions), PIL
(Python Imaging Library for image processing), shutil, and cv2 (OpenCV).
2. It defines the folder path and file type to locate JPEG image files in a specific directory.
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3. The script uses glob.glob() and max() to find the most recently created JPEG image file in
the specified folder.

4. The found file is copied to another directory named
‘home/nddot/IMAGE CAPTURES/VISUAL CROP'.

5. It locates the copied image in the VISUAL CROP directory, then opens and reads a text
file named 1.txt associated with the image.

6. The script attempts to parse the content of “/.fxt’ using a regular expression to extract
numerical values that represents cropping coordinates.

7. It resizes the image to dimensions that are multiples of 227.

It crops the image based on the specified coordinates (x, width, y, height).

9. It saves the cropped image n the
Yhome/nddot/IMAGE _CAPTURES/RUN FOLDER/C jpg’ directory.

10. If no valid coordinates are found in the text file, or if there is an error reading the text file,
appropriate messages are printed.

*x

6.13 Al Processes — Corrosion

The image classification-based Alex Net model has been used for corrosion detection. A
total of 9254 images have been used for training the model. It is a pretrained model in
Pytorch framework in Python. All the images are annotated into two classes; with corrosion
(WC) and without corrosion (WOC).

The breakdown of the corrosion script — ‘Corrosion.py’ executed on the microcomputer is
as follows:

1. Image augmentation has been done by using transform.
Randomsized Crop/RandomR otation/Rand omHorizontalFlip/CenterCrop

2. Then the augmented image converted to torch tensor of values 0 and 1 by the
function transforms.ToTensor().

3. All the train and validation dataset have been saved into subfolders named “train™
and “valid” respectively. These subfolders are saved into a main folder with the
name “Dataset”.

4. os.path.join() has been used to concatenate the paths of main folder to connect the

training and validation folders.

The listdir() function provided by the os module has been used to get the number

of classes.

To Load data from folders ImageFolder() has been used.

The label of the images has been obtained by using class to idx.items().

Dataloader module has been used to iterate the loaded data.

The final layer of Alex Net has been modified to work as a binary classifier.

e

OO

6.14 Al Processes — Crack
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Similar to corrosion, the image classification-based Alex Net model has been used for

crack detection. About 200 images with 1500 sub images have been used for training the

model. It is a pretrained model in Pytorch framework in Python. All the images are
annotated into two classes; with crack (WCrack) and without crack (Without Crack). In

the following, all steps were summarized.

Image augmentation and superimposed images has been done by transferring
images colors and crack, as well as crack direction.

Data was divided into two main datasets (train and validation) with two subfolders.
We generated a balanced dataset (791 crack images and 791 uncrack images) for
crack with lab data since there is no available data set for crack.

We also added about 300 new images based on recent crack images and our
inspection. This folder (caltec256subset) now contains:

845 crack images (folder (a))

845 uncrack images (folder (b))

os.path.join() has been used to concatenate the paths of main folder to connect the
training and validation folders.

The listdir() function provided by the os module has been used to get the number
of classes.

To Load data from folders Image Folder () has been used.

The label of the images has been obtained by using class to idx.items().

Data loader module has been used to iterate the loaded data.

The final layer of Alex Net has been modified to work as a binary classifier.

Test algorithm in real time: this part contains a script file in Python which usually
works to call images in test folder and order it based on subimages names, as well
as calling trained model to predict class labels of each sub images. This part was
designed in such a way that the inspectors can call model and sub images in real
time and summarize all results with classes in excel file.

This excel was used as an input file to get main information to inspectors about the
location of crack.

Finally, the test sub images were used the performance algorithms. To do this, the
train model was used to predict the class of each sub image.

The result was saved in excel files (crack.xls) in two subclasses with image’s names
in real time.

In total, the crack folder contains all images related to the train dataset, trained
model, test script to show algorithm’s performance in real time, and all sub images
related to the test dataset.

6.15 Al Processes — Bolt Issue

Just to reduce system complexity in real time as well as make sure that all code is

compatible with Jetson, the same liberty (Py torch) was used again forbolt detection. Based
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on the problem, bolt considered as small object and using object detection algorithm is one

of the best options based on previous studies.

The following model builders can be used to instantiate a Faster R-CNN model,
with pre-trained weights.

All the model builders internally rely on the torchvision.models.detection.faster
renn.FasterRCNN _ Resnet base class.

All images were annotated based on bounding box location.

The folder contains three excel files for all annotated boxes for training and testing,
and all images.

After training, the model was saved in the same folder.

In test mode, the inspectors call train models with test images just to predict the
defected bolt location.

After prediction, the carinated related to defected bolt was saved in text file.

Page |74



Appendix A Payload Interface Design

1.Materials and Manufacturing

1.1 Stratasys F370 Composite 3D Printer

F370 Highlights

Maximum build area of 14 x 10 x 14 inch (356 x 254 x 356 mm)
Matenal Bays: 2 model, 2 support

Insight Software Package

Touchscreen Graphical User Interface

Auto changeover capabilities

Wi-Fi capabilities

Three USB ports (2 in front, 1 in back)

Camera for remote maonitoring
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1.2 ABS M30 Black/Ivory Material Properties

stratasys

Physical Properties

Values are measured as printad. XY, ¥Z, and ZX orentations wers tested. For full details refer to

the Stratagvs Materials Test Heport (immediate download upon clicking the ink). DSC and TMA
cunves can be found in the Appendix.

Table 4. ABS-M30 Physical Properties

Property Test Method L —

L]
XY XZIIX

ASTM DE48

HDT @ 66 psi 103.8 C12189R
Method B
ASTM DE48

HDT @ 264 psi 989 CZ11.TH
Method B
ASTM DT7426

Tg 105.2C 22147
Infiection Point
ASTM EB31 e

Mean CTE B60.77 pm/m 'HG]
{40 °C to 140 °C) {33.76 pin./fin.*F
ASTM EB31 +a,

Mean CTE S iy
{40 °C to BO °C) 32.58 pin/din"=F]

Volume Hesistivity ASTM D257 > B.75°10M4 ("ocm
ASTM D150

Dielectric Constant 2.684 2.78
1 kHz test condition
ASTM D150

Dielectric Constant 2.49 2.61
2 MHz test condition
ASTM D150

Dissipation Factor 0.003 0.005
1 kHz test condition
ASTM D150

Dissipation Factor 0.004 0.007
2 MHz test condition

Specific Gravity il 2l 1.05

C Grar \
. @23 °C
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& stratasys

Table 6. ABS-M30 Mechanical Properties (F770)

XZ Orientation’ ZX Orientation’

MPa 325(1.7) 231 (1.3
Yield Strength - - :

psi 4720 .(250) 3350 {190)
Elongation @ Yield % 21 0.1 1.6 (0.2)

MPa 278 (2.4) 229(1.2)
Strength @ Break

psi 4000 (350) 3310 (170)
Elongation @ Break % 4501.2) 1.6 (0.2)

GPa 2.00 {27} 1.78 (29)
Modulus (Elastic)

k=i 290 (3.9) 258 (4.1)
Flexural Properties: ASTM D790, Procedure A

MPa Mo Break 378 4.1)
Strength @ Break

psi Mo Break 5480 (590)

. MFa 58.1(2.2) -

Strength @ 5% Strain

psi 8430 (320) =
Strain @ Break % Mo Break 2.2 {0.3)

GPa 247 (0.03] 1.84 (0.08
Modulus k) 0.08)

k=i 315(4.9) 287 (8.1)

Jm Mo 2.7 (3.
MNotched o il

ft*ibvin 1.71 (0.31) 0.408 {0.07)

Jim 423 (96) 62.9 (134)
Unnotched

ftibvin 7.92 (1.8) 1.18 (0.3

(1) Values in perentheses ars standard deviabons.
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2 Component Design

2.1 Battery and Jetson Housing

Front View
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Side View
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2.2 Battery and Jetson Housing Brackets

Front Upper Bracket
| 63 .10

Side View
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Rear Upper Bracket

87.85

Top-Down View

<

Back View
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Lower Bracket
0

Top-Down View

2.

Front View
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2.3 Gimbal Housing

t [

Jw

'r

Side Half-Section View

] 5 |

Front Half-Section View
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Top-Down View
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2.4 Gimbal Housing Brackets
Rear Gimbal Bracket

33.35
1335

—

S :
1
-5
21.75
. 41.75

Top-Down View
NI

Back View
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Front Gimbal Brackets (same model, just mirrored)

21.2¢

28.14

Top-Down View

8.52

-

Side View (Smaller Side)
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2.5 Camera Housing

186

87.96

51.83

i .

Top-Down View

12.5

36.5

|
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Bottom View
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==

Rear/Interior View
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2.6 Camera Housing Clip-on Cover

, 85 -

8.
|

17

Exterior-Facing Side View

14

Bottom View
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2.75

Side View
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