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Executive Summary 

Periodic inspection of highway ancillary structures plays a vital role in maintaining 

uninterrupted highway operation. Utilizing small Unmanned Aerial Systems (UAS) 

technology allows for ancillary structure inspections to become faster and cheaper, 

providing a benefit to state agencies and the public in the state of North Dakota. However, 

the existing available UAS technology and UAS payload does not offer real-time 

autonomous defect detection using artificial intelligence (AI) updated with inspector input. 

This report describes the design and functionality of a payload equipped UAS that can 

provide real-time inspection of ancillary structures with a developed built-in AI model 

interface.  The models are developed using deep learning models to autonomously detect 

common defects in ancillary structures (corrosion, missing bolts, and cracks), to assist 

inspectors for more robust condition assessment. The developed payload sys tem includes 

a microcomputer capable of running multiple Convolutional Neural Network (CNN) 

models during flight. The research team developed a set of annotated datasets for each type 

of defect investigated in this project. AlexNet-integrated models for corrosion and crack 

detection were trained on 9257 and 1500 images, respectively. The models label tiles of 

each image if corrosion or crack is detected. Faster RCNN was trained on 1000 images for 

defective bolted connection that are common in ancillary structures. The trained R-CNN 

automatically puts a bonding box around the defected area in the bolted connection images. 

All models reached over 90% accuracy in training and validation. A Graphical User 

Interface (GUI) is developed to interact with the payload through a laptop. The inspector 

can run the GUI to collect visual or thermal images, classify defects, accept or reject the 

defects, re-train the models based on new annotated data, and store final defect detection 

results. The payload consist of both bota and thermal sensing to capture images and live 

stream, relaying the data to the ground station laptop through a shared Wi-Fi network. A 

live stream of the visual and thermal sensors allows the operator to quickly assess the 

structure and determine which regions need further evaluation.  The payload consists of 

Ground Station Laptop with GUI and repository, Portable Wi-Fi router, Microcomputer 

Board, Visual camera, Thermal camera, Housing and mounting equipment, Gimbal. The 

payload functions were tested and verified in realistic environments. The payload 

performed well during the test but was found to have a limitation of slow processing time. 



P a g e  | 1 

1 Introduction 

Non-bridge structures such as overhead sign structures, high mast light poles, and traffic 

signal mast arms are referred to as ancillary structures on highways. Regular inspection of 

these structures is important. To ensure structural integrity , all responsible authorities 

require annual inspections of anchor bolts, joints, and base plates. Negligence to do so over 

the time can reduce the service life and, in many cases, cause the structure to fail. Among 

these, corrosion, which reduces the struc ice life, is the destructive attack of a 

metal by chemical or electrochemical reaction with its environment. Though some 

ancillary steel structures may be painted, protection is most often provided using 

galvanizing or fabrication using weathering steel. Unfortunately, environmental corrosion 

cannot be generalized in terms of sources. Several factors such as exposure time to the 

corrosive environment, atmospheric pollution level might control corrosion at micro level. 

The authors of [1-2] revealed that starting with the rough texture at the surface corrosion 

can propagate inside the structure. This not only increases the maintenance cost due to the 

continuous reactivity with the surrounding electrolyte but also responsible for 42% of 

failure condition of infrastructures [3]. The other defects that need to be taken care of are 

the fatigue crack and defective bolts. High ancillary structures are subjected to dynamic 

loads such as wind gusts, truck induced gust etc. This cyclic loading can introduce fatigue 

stress which may be started earlier than the yield stress at static loading. In addition to this, 

defective welding can initiate fatigue cracks by acting as a weak joint. However, joint 

damage can happen due to loosening or missing bolts too. The fastener can be loosened 

and started to contribute to failure of the joint. Though the initiation of failure of an anchor 

rod or bolt in a structural connection may seem apparent, even secondary fasteners that fail 

can lead to sign breakage and small items falling into traffic. 

The cause of a joint failure is not only cyclic loads, but bolted joint failure can also occur 

due to environmental causes [4]. For instance, higher temperature may reduce the load 

carrying capacity of the bolt and thus lead the structure to be unstable. Because of losing 

structural integrity, catastrophic accidents may take place. Thus, effective monitoring and 

diagnosis of the bolt connections are necessary to ensure that structures are safe and 

reliable.  
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In the United States, periodic inspections of in-service structures such as bridges, dams etc. 

cost significant amount of money to be conducted by human labor [5]. Satisfying the 

maintenance and protection of traffic safety requirements while controlling costs wi thin 

the acceptable limits could be challenging in the current practice. There is a need to 

establish a safe, repeatable, and cost-effective methodology to inspect ancillary structures 

in North Dakota. Autonomous defect detection mechanism integrated with unmanned 

aerial vehicles (UAVs) can be used as a safe and inexpensive measure to introduce 

revolutionary refinement in this arena. The MDOT (2019) has shown 60% cost savings 

associated with drone-based inspections; moreover, a report from the American 

Association of State Highway and Transportation Officials (AASHTO 2018) has 

proclaimed that 35 of 44 reporting state DOTs with previous experience are deploying 

aerial platforms in some capacity.  

2 Inspection Methodology 

2.1 Current Practice for Inspection 

There are approximately 1000 different types of state-owned ancillary structures (Table 1) 

on the different highways of North Dakota. Visual Inspection is the currently practiced 

method for defect assessment, which is time-consuming for vast areas, impossible for 

inaccessible areas and subjective to the inspector. In addition to this, gaining access to the 

structure for inspection personnel is one of the most difficult challenges for the inspection 

and evaluation of overhead sign structures. Inspection challenges arise from the need to 

satisfy Maintenance and Protection of Traffic (MOT) safety requirements while cont rolling 

costs within acceptable limits. Such access strategies include night work, mobile lane 

closures, and other innovative methods for short-term lane closures. Moreover, FHWA 

recommends to be equipped with enough auxiliary equipment to perform any kind of 

structural inspection [6].  

Table 1: Number of ancillary structures at North Dakota

Type Number (approximate) 

Traffic Signals 450 

Overhead Signs 175 

High Mast Lights 375 
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Sign structure inspection can be a hazardous structural inspection. Per guidelines, the sign 

structures are often -speed roads where work zone 

safety setups could be extremely difficult to set up [6]. In consequence, it is routine that 

slippery structural members. Vehicle mounted bucket (Figure 1) is the most typical way to 

access the sign structure. A 30 ft boom is sufficient for inspection. But most of the time 

these vehicles should be rented from cable and telephone companies. Because of traffic in 

the morning, some work needs to be postponed to nighttime. If inspections are planned to 

be done at night, adequate lighting must be provided to avoid hazards.   

Figure 1: Inspection with (a) Bucket truck and (b) Climbing [2]

For external corrosion and bolt missing/loosening detection, visual inspection is the most 

reliable method. But for crack and internal corrosion detection, non-Destructive Testing 

(NDT) is an important tool used for inspection of ancillary structures. Examples include 

small fatigue cracks in welds, corrosion occurring on the interior of the structural element,  

and cracked anchor rods. Usually, a dye penetrant test and magnetic particle test are 

performed to detect surface cracks. For the internally propagated cracks, eddy current is 

corrosion which may be externally invisible. 
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Figure 2: Thickness Measurement at Critical Location of Structure Post [2]

Current inspection techniques can be challenging to the transportation agencies due to the 

requirement of preplanning for the lane closure [7]. Moreover, onsite documentation is 

another challenge as lack of coordination may lead the inspector to revisit the site once 

which might be inconsistent.

2.2 Autonomous defect detection method 

Different image-based algorithms have been used by the researchers to identify the 

corrosion in steel structures. Conventional image processing methods such as image 

registration by the binary information, k-mean clustering, color space changing etc. were 

used by the researchers [8-10, 1, 11] in detecting the corroded pixels from the images. On 

the other hand, a model has been developed by Lee et al. [12] to identify the defective pixel 

from the variation of statistical parameters such as mean, mode, median etc. Some 

researchers stepped forward by using different deep learning models such as Faster RCNN 

[13], ResNet 50 [13], VGG16 [14] for detecting corrosion in steel structures. Fatigue cracks 

in steel structure is a challenging problem to mitigate [15]. Unfortunately, fatigue cracks 

in steel did not get the attention of many researchers as concrete cracks  due to absence of 

realistic data for AI model development. In the past, nondestructive methodology such as 

attaching piezoelectric material [16] with drone used to determine the crack in concrete 

bridge.  

On the other hand, a crack detection algorithm using canny edge detector has been 

developed by the authors of [17, 18] which detected cracks with less than 0.15 mm error 

to ground truth. The problem with the conventional image-based algorithm is that it needs 
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user input threshold value which may change depending on the quality of the dataset. 

Dorafshan et al. [19] also revealed that the deep learning models such as AlexNet 

outperformed different types of edge detector for detecting concrete cracks. A deep 

convolution neural network has been developed by the authors of [20] to detect and localize 

crack in concrete bridges from images. Again, the authors of [12] developed an automated 

process using deep learning models for detecting, localizing, and mapping of five different 

types of defects in concrete bridges and reported overall 85.3% accuracy. The application 

of different artificial intelligence models was not limited to corrosion and crack detection 

in the infrastructures. The authors of [19] used image based deep learning algorithm such 

as Hough transformation to estimate the looseness of the bolted joints. On the other hand, 

the authors [20] developed a deep learning model with images collected from the real steel 

infrastructure showing different modes of rotation of loosened bolts. However, the authors 

of [21] generated a deep learning convolution neural network from the signal collected 

from the existing nondestructive method such as ultrasonic wave propagation.

2.3 Real time defect detection using UAS 

The use of UAS for detection of structural defects is not novel, but very few solutions 

utilize an approach that provides AI defect detection support in real time. Experimental 

research using UAS for detecting delamination, corrosion, cracks on photovoltaics (PV) 

modules used in power plants was carried out by the authors of [22]. A thermal camera 

mounted on UAS (PLP-610) was used to collect the images and processed them on the 

ground using different image-based algorithms. 

 Eschmann et al. [23] implemented an eight-rotor unmanned aerial vehicle (UAV) with a 

payload equipped with different sensors such as gyroscopes, accelerometers, and a 

barometric altitude sensor to do the aerial survey as a part of regular inspection s of the 

buildings. In addition, Chen et al. [13] used a high-definition camera mounted on six-axis 

UAV platform with some intelligent features such as obstacle avoidance, positioning, and 

stable hover to detect corrosion in large steel structures.  

A novel approach is introduced in [24], wherein a UAS solution is proposed that can mount 

onto a wall, climb along its flat surface, and identify cracks. While this method would not 

be practical on ancillary structures which are usually not flat, the paper discusses real-time 
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use of deep learning models to support the identification of cracks. The crack detection 

models were proven successful at the short range, as lighting was not a significant factor. 

An method, that is entirely autonomous, to inspect bridges for common defects is proposed 

and partially demonstrated in [25]. The autonomous flight was scaled to a limited, 

controlled environment. AI Models for the defect types of steel corrosion, steel crack, and 

loosened bolt were demonstrated to run simultaneously with high accuracy.   

2.4 Choice of UAV 

The choice of a UAV to use in an imaging application depends on several factors. The 

payload weight should be estimated based on the intended application. The UAV to carry 

the payload should have a payload capacity greater than the expected payload weight, with 

adequate margin (at least 20% margin). The margin is to account for any other weight that 

may get added to the payload as the design process progresses. Another factor that may 

limit the choice of UAV is the adaptability of the flight control system. Some drone 

manufacturers may protect the Intellectual Property (IP) of the UAV and flight control 

system, which requires the control of the payload system to be separate from that of the 

system should be evaluated to determine if the sensor payload can be equipped onto it. 

Many UAVs include a gimbal system that maintains a stable camera angle, even as the 

-in gimbal system for the payload

provides a stable mounting to ensure no motion blur in images. Table 2 provides a 

comparison of different UAVs in terms of the number of rotors, payload weight, diameter, 

and maximum flight time. 

Table 2: UAV Comparison 

Name Rotors Payload Diameter Max Flight 

Time* 

DJI Mavic Air 2 4 300g 30.2 cm 34 min 

DJI Phantom 4 Pro 4 500g 35 cm 30 min 

Yuneec Typhoon H 6 1800g 52 cm 25 min 

DJI Matrice 600 Pro 6 6000g 113.3 cm 32 min 

Freefly Alta 6 6 6800g 112.6 cm 45 min 
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2.5 Wireless Communication 

The sensor data must be sent in real-time to the ground control station (GCS) at a high 

speed due to the high number and size of frames. To achieve this, a long-range and high-

speed communication system is needed for the UAV to communicate with the GCS.  

\In many UAV systems, real-time data is transmitted from the UAV to the GCS with a live 

feed of the camera equipped on the UAV. The payload designer for such project should 

consider using the existing communication system between the GCS and the UAV, which 

can reduce the weight and power consumption. Also, the range of the communication 

network will remain consistent. 

In the review of communication systems used by similar UAV imaging applications, two 

techniques are primarily used. The first technique is to have the sensor data sent on the 

same network as used by the Flight Control System. The second technique is to imp lement 

a communication network separate from the Flight Control System. This has no risk of 

slowing the flight controls. However, this technique likely adds to the weight and power 

consumption of the UAV payload. Both disadvantages reduce the flight time of the UAV. 

As previously mentioned, reduced flight time may result in longer mission time as the UAV 

may need to be charged.  

2.6 Smart Graphical User Interface 

The mission control and data displaying system form the user-interface level in the UAV 

system, wherein the mission commands and instructions are conveyed to the UAV and data 

captured using the payload sensors are processed, analyzed, and displayed at the user end 

in form of a GUI based application. The display system serves as a visual inte rface between 

the UAV and the GCS staff. In the realm of autonomous systems, smart GUI-based user 

interfaces have long played an important role.  

There are some research efforts aiming to provide ways to connect UAVs and the cloud 

infrastructure forming a smarter way of interfacing between the UAV and the ground 

control. Lin et al. [25] put forward a solution of integrating the cloud service of Google 

Earth with the UAV. This was done using transmission of data to a MySQL database using 
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an android phone. The user used a web browser to access the database's UAV information. 

UAVs were controled using a specific flight plan defined in the database via a waypoint. 

Similarly, a multirobot control and communication architecture with a user interface were 

developed by the authors of [26].  

2.7 Cameras 

The cameras deployed on the payload were selected to satisfy three key requirements. First, 

they must be lightweight so they could be used on a variety of UAV platforms. Second, 

there must be visual and thermal cameras in the payload to augment detection. Live 

streaming with both cameras allow for real-time imaging to assist the inspector in defect 

detection. The third requirement is that the sensors must provide high resolution images to 

the AI models. Any unwanted blur can affect the ability of the AI models to identify 

defects. Also, the live streaming is best with high quality images to ensure the inspector 

knows the areas of interest to run the defect detection models. 

The selected visual camera is an Arducam HQ, with a resolution of 12.3 MP. The resolution 

was dropped to 1980 * 1080 pixels to improve the processing time of the neural networks 

running in real time. The sensor alone has a low focal point with no lens, meaning the 

sensor alone would only focus on a close object. Also, the aperture is wide, meaning that 

the depth of field it can focus on would be very limited. To improve focal length and depth 

of field, an external lens is added to the Arducam to ensure the camera can focus on many 

objects simultaneously at a moderate distance. This lens adds weight and complexity to the 

design but the resulting camera is lighter and less expensive than other drone-mounted 

cameras, with similar image quality.   

The selected thermal camera is a longwave infrared (LWIR) thermal camera. This camera 

uses a 12 µm pitch Vanadium Oxide (VOx) uncooled detector capable of capturing 640 * 

512 pixels. For the live streaming of the sensors, GStreamer was used. It is an open-source 

pipeline-based multimedia framework.  

2.8 Data Transfer 

To transmit a large amount of data with a high throughput, an IEEE 802.11ac Wi-Fi 

network is established to connect the Jetson and ground control station. The Wi-Fi is 

established by a router transmitting at the 5 GHz (433 Mbps) band. Secure Shell (SSH) 
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protocol is used for cryptography of the data to prevent spoofing. The payload uses a static 

IP address, so Wi-Fi password protection should be implemented as needed for securing  

the system. The Transmission Control Protocol (TCP) Server-Client architecture was 

implemented for the robust transfer of data from payload to the GCS

microcomputer acts as the server, reserving a port number to listen for commands. The 

GCS acts as the client, sending various commands to Jetson. When the computer sends a 

command to Jetson, the Jetson runs the appropriate processing, which is often a still image 

capture, stream request, or AI model(s) to be run on the latest image.  

3 Graphical User Interface 

The control of the payload is handled by a Graphical User Interface (GUI) run on a Ground 

Station laptop. This GUI is written in C# language, developed in Microsoft Visual Studio 

2022. The GUI is compiled as an executable so that most computers can run it easily. A 

user guide is provided as part of the GUI to assist the inspector in using each function of 

the GUI with the payload, as well as technical details on the back-end processing.  

The GUI has several functions:  

1. Command the payload to do the following:
a. Capture still images from visual or thermal cameras
b. Start live stream from visual or thermal cameras
c. Run AI models on the most recent image

2. Crop images for faster processing of areas of interest
3. Show the location of defects with bounding boxes (as determined by AI models)
4. Allow inspector to modify bounding boxes
5. Store images with embedded bounding boxes in a repository
6. Provide the details of background processes to the inspector

Below image shows the main screen of the GUI and the sections that comprise it. 
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Figure 3: GUI Main Screen

GUI Sections and Descriptions: 

Image Display 
o Displays still images
o Allows for modification of defect locations after defect detection processes are run

Processes Output 
o Describes the steps and output of back-end processing to assist inspector

Camera Controls 
o Starts visual or thermal live streaming
o Captures visual or thermal still images

Run Processes 
o Initiates defect detection processes
o The number of defect types can be selected

Processing Results 
o Switches between results of defect processes (if multiple are run)

Image View 
o Switches between different image types (often used before processes are run). The

image types include Visual, Thermal, and Cropped Visual.
Defect Data Post-Processing 

o Finalizes boxes from defect processes before storage to repository
o Stores image(s) to repository
o Trains defect processing models to improve accuracy
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The cropping function allows for a smaller area of interest within an image to go through 

the selected AI model(s). This will run through the models faster than the whole image, 

while also providing a result in the repository focused on the defect alone.

Figure 4: GUI Crop Function

Figure 5 shows the repository interface of the GUI. The bounding boxes that were selected 

by the inspector are embedded in the image. The repository functionality allows for quick 

and easy storage of the captured images during an imaging mission. This is crucial so that 

the inspector has an archive of all the areas that were deemed as potentially containing a 

defect. During a mission, the inspector can quickly capture an image of a target area with 

potential defect locations, store it in a repository, then move to the next location. After the 

mission, the inspector can review the repository to determine the next maintenance steps 

to take.
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Figure 5: GUI Repository 

3.1.1 Interactive Defect Identification on GUI 

The Interactive GUI functionality works the same for both Corrosion and Crack defects. 

The only difference is that the Corrosion defects are identified by blue boxes, while Crack 

defects are identified by red boxes. When the Defect Detection process for Corrosion 

and/or Crack are run on an image, the Interactive GUI divides the image into an 8 x 4 grid 

of sub-images to prepare for processing. When the processing is complete, the Interactive 

GUI places a box around each sub-image that contains the defect(s). The box is not centered 

around the defect, meaning the defect could be anywhere within the box. If the inspector 

disagrees with the identified defect locations, they can change the selected boxes before 

storing the image in the repository. They can de-select a sub-image that they believe does 

not contain a defect, and the box will be removed. Also, they can select a sub -image that 

they believe does contain a defect that was not identified by the process. This process of 

de-selecting or selecting is as simple as clicking on the location within the GUI.

The Interactive GUI for Bolt Issues works differently than Crack and Corrosion. When the 

Defect Detection process for Bolt Issues is run on the current image, the Interactive GUI 

identifies the exact location of each Bolt Issue, without having to divide the image into 

sub-images. Yellow bounding boxes are drawn around each identified defect, with numbers 

listed on the top left corner of each box. The size of the boxes var ies, depending on the 
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sizes of the defective areas. When the processing is complete, the bounding boxes appear 

on the screen, superimposed on the image. The inspector has the option to remove any of 

the bounding boxes placed by the model. Then, the inspector can click and drag anywhere 

within the displayed image to place a new bounding box, if they determine a bolt defect is 

in that location. The boxes can be any size and location, as long as it is within the image. 

The bounding boxes changed by the operator are saved when toggling between different 

image views. This allows the operator to evaluate multiple defect types within one image 

and modify multiple sets of defect locations before saving to the repository. 

3.1.2 Back-end GUI Processes 

There were many challenges in designing the GUI to include user-friendly features. Many 

of these were due to limitations with C# as a programing language. For one, the main C# 

form needs the images from the payload to be displayed with bounding boxes overlaid on 

top to identify defects. To accomplish this with the most optimal processing speed, the 

image is redrawn into the Image Display every time a bounding box is removed. To 

elaborate further, the bounding boxes shown in the Image Display area are not se parate 

elements of the GUI, but rather static shapes drawn onto the image. This method was 

methods of either resaving the image every time or creating new GUI elements that are 

placed in front of the image. 

There are many files within the folder structure of the GUI that are python or batch files to 

support the GUI. The GUI calls these files multiple times during normal operation. These 

files are mainly used for interaction with the payload or for image modif ication. The reason 

that these are external to the GUI is due to limitations of the C# language for inter -agent 

communication and image processing.  

To ensure the inspector interaction with the boxes is saved when switching from one defect 

type to another, different approaches are taken for different defects. For Crack and 

Corrosion, array is 3 

dimensional, with the first two dimensions corresponding to the x and y coordinates of the 

box, respectively. The 3rd dimension is simply used to switch between Crack and 

Corrosion. To preserve the bounding boxes used for Bolt defects, the box locations and 

size is saved in a text file in the project folder. 
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3.2 AI model Architecture 

3.2.1 Corrosion detection model 

The development of an Artificial Intelligence model for detecting corrosion required 

several steps. Overall data generation, data augmentation, data annotation, model training, 

and testing are the basic phases of the model development. AlexNet, the robust image 

classification model, was used for detecting corrosion. The architecture of AlexNet has 

been proposed by Krizhevsky [29] which has 8 main layers. There are 25 sublayers in these 

8 main layers which are trainable. This is a pre-trained deep convolution neural network 

on imageNet dataset. Figure 6 depicts the backbone of the AlexNet in terms of five 

convolution layers(C1-C5), seven layers (ReLU1-ReLU7) with rectified linear unit(ReLU) 

to solve the issue with non-linearity, two normalization layers (Norm1-Norm2), three fully 

connectedlayers ((FC1-FC3). Among these three fully connected layers the last layer has 

been modified so that the model can work as binary classifier with the help of sigmoid 

function at the last layer. 

Figure 6: The architecture of AlexNet [29] 

Two types of sensors have been used for data generation. The Specification of both the 

sensors are mentioned in Table 3. The data generation process is completed in two phases; 

mobile phone has been used in the first phase and UAS camera later.  

Table 3: Camera Comparison 

Type of the device Samsung Galaxy M30 UAS camera 

Resolution 13 Megapixels 7860 x 4320 Megapixels 

Aperture size f-stop; f/1.9. f-stop; f/2.8 - f/11 
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Using images from different sensors in model development helped to test and rectify the 

existing signal posts with an average height of 6.7m(22ft) and a cantilever arm length of 

6.1-6.7m(20-22ft) have been collected by the research team by using the mobile phone 

from 9.53 am to 11.53 am on May 17, 2021. The sizes of the images were 2311 pixels X 

4128 pixels [30]. In the second phase, approximately 200 images are collected by UAS 

camera from the in-service ancillary structures.

Data augmentation library such as albumentation from python has been applied on the most 

representative images with corrosion to augment the data set. The model development 

starts with 4000 images. At present, it is augmented to 9257 images after testing model 

performances for different images (Figure 7).

Figure 7: Performance evaluation of model by varying the number of images

TPR (true positive rate) represents the percentage of the correctly detected corrosion 

images. Similarly, TNR (true negative rate) depicts how many non-corroded images have 

been detected accurately. Higher value of both TPR and TNR value work as indication of 

less false detection. All these parameters were determined considering the training labels 

as ground truth.

After data augmentation all the images have been labelled with corrosion (WC) and without 

corrosion (WOC) by the research team. The total number of images with corrosion is 4600 
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and 4657 for without corrosion. To confirm the robustness of the model the without 

corrosion images consists of diverse background such as cars, sky, trees including the 

images from the sound part of the steel structures. 

The model has been trained with 9254 images and tested with the images collected by the 

research team from the internet and the combined dataset comprises images of different 

sensors.  

3.2.2 Crack detection model 

The dataset utilized in this study for AlexNet consisted of 250 images sourced from prior 

research studies [31,32], in addition to an extra 30 images obtained from real-world 

ancillary structures. This dataset was assembled to encompass images from various 

sections of the structures for a comprehensive examination of cracks. It was split into two 

annotated sets based on the types of detection performed by deep convolutional neural 

networks (DCNN). The AlexNet annotated dataset comprised 200 images displaying 

fatigue cracks and 250 sub-images without cracks, all with dimensions of 256 by 256 

pixels. To augment the training dataset, various data enhancement methods were applied, 

including adjustments to color, brightness, and crack orientation, resulting in an  expanded 

dataset of 1400 sub-images. Furthermore, realistic images of fatigue cracks were overlaid 

onto images of undamaged and in-service ancillary structures, boosting the dataset's size 

to 1500 sub-images. To enhance subsets related to cracks, a combination of random under-

sampling and data augmentation was used. 

To create a more diverse training dataset, some images of ancillary structures, often coated 

in silver or blue anticorrosion paint alongside red, had their colors modified to silver or 

blue. Additionally, since corrosion is a frequent occurrence in steel s tructures, the colors 

of select images were altered to mimic corroded plates or galvanized steel plates. This color 

transformation was carried out using methods outlined in Reference [33], wherein the color 

of galvanized steel plates, both corroded and intact, served as the target color. Images from 

in-field structures were considered input objects, and the process described in Reference 

[34] was employed to adjust the color of raw images to match the color of images in the

target dataset, thus enlarging the training set. Figure. 8 illustrates the original images, target

images, and the outcomes of the color transformation algorithm.
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a) b) c)

d) e) f)

Figure 8: Data augmentation.

a) raw images, b) raw image with corrosion c) fused image, d) raw images, e) galvanized steel,
f) fused images

Acquiring images of structures with cracks can be challenging as they are often promptly 

repaired to prevent structural risks. To address this, a limited number of images depicting 

ancillary structures with and without fatigue cracks were blended into a color algorithm. 

This multi-faceted data augmentation approach was employed to generate lifelike images 

of ancillary structures with fatigue cracks, further expanding the dataset to 1500 sub-

images. Figure 9 illustrates the overlaying of images with and without cracks to create 

authentic images of ancillary structures with fatigue cracks [33]. 

Figure 9: Examples of using a superimposed approach to augment data, a) Original image with 
a crack, b) Original image without crack, c) a superimposed crack, d) raw image from Reference 
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[32], e) Original image without crack, f) superimposed crack g) Original image from Reference 
[34], h) Original image 31].

Rotation was employed as a data augmentation technique to boost the size of the crack 

dataset, a method previously demonstrated to be effective in research. Images were 

uniformly rotated at 45° and 135° angles, as depicted in Figure 10, to augment the training 

set. 

Figure 10: Data augmentation, a) raw image, b) rotated by 45 compared to original image, c) 
rotated by 90 compared to original image [1].  

It is the most challenging part of crack detection to create a dataset based on limited images 

from steel structures and run AlexNet as a deep learning algorithm in real time to detect 

cracks as defects. The accuracy rate of the model can be improved by adding more data 

from real structures since only two ancillary structures with fatigue crack (HM 0029-

138.442 and HM 0029-137.911) exhibited during inspection of this project. We have 

already taken images of these two structures and have added them to the main datasets. 

However, the number of images from real structures should increase to have better defect 

was used to test algorithms. 

These images were divided into 1,100 smaller segments. Subsequently, trained Alex Net, 

also referred to as the Crack Model, was applied to categorize these images into two distinct 

categories (sub images with cracks and sub images without cracks).  

The results generated by AlexNet models were recorded in separate Excel files for crack 

and corrosion, organized according to image names and their corresponding labels. 
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Figure 11: AlexNet architecture in paper [5]. 

3.2.3 Bolt Detection Method 

The dataset comprises approximately 1,000 images depicting absent bolts or nuts in 

ancillary structures within laboratory settings across diverse locations, including North 

Dakota and Baltimore in the USA, as well as Istanbul in Turkey. 

Faster R-CNN (FRCNN) is a variant of Region-Based Convolutional Neural Networks 

(RCNN), belonging to the family of machine learning models designed for object detection 

in images. The RCNN approach involved producing a series of bounding boxes as output, 

each encapsulating instances of missing bolts as objects. The RCNN model was 

specifically trained to identify and localize defective bolts within these bounding boxes 

during testing. Implementation of the model was carried out using Python , where the 

defected bolts were placed within the bounding boxes, and predictions for bolt or nut 

defects in the test set were made. 
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Figure 12: Bolt Detection Method 

3.3 Data Annotation  

Bounding boxes were used to annotate missing bolt area. Figure 13 displays an example of 

annotated missing bolts with bounding box (shown a rectangular shape)  

Figure 13: Structure with a missing bolt, shown by bonding box annotation 
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3.4 Data Augmentation 

Our objective was to enhance the resilience of object detection algorithms through the 

implementation of data augmentation techniques. Various augmentation methods, 

including noise addition, color adjustments, blurring, and a diverse set of augmentations 

were employed to augment the dataset's image sizes. This approach aimed not only to 

improve the model's ability to detect objects but also to diversify the dataset by introducing 

variations through augmentation techniques. 

Figure 14 shows the performance for some images in the testing set.  This image is trickier 

compared to other image since the color of bolt is black and different from trainset 

(Figure14c), blur image (Figure14b), hidden by structure (Figure14f), and not visible 

enough (Figure 14b). 

 (a)  (b)  (c)

 (d)  (e)  (f) 

Figure 14: FRCNN result. a) multiple missing bolt output, b) multiple loosen bolt output, c) 
black loosen bolt, d) missing bolt, e) loosen nut, f) loosened nut.
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4 Payload System Design 

The System Block Diagram is shown in Figure 15. The left side of the diagram is for the 

hardware/software located on the ground, while the right side is for the hardware/software 

located in the air, on the UAV.  

Figure 15: System Block Diagram 

The payload described in this document works separately from the stock UAV hardware 

and software. The only interaction is the control of the gimbal that holds the payload should 

be commanded by the UAV flight controller. The method for accomplishing this varies, 

depending on the UAV controller, but usually is a simple setting in the software provided 

by the flight controller. Alternatively, the gimbal can be configured to be controlled by the 

Ground PC, using QGroundControl software on the laptop establishing a link to the gimbal 

through the Jetson running MavProxy software. In this case, the Jetson receives gimbal 

commands from the laptop and transfers the commands to the gimbal. 

runs the AI models to detect defects within 

the captured images on command. The data and commands between the payload computer 

and Ground PC are transmitted over a Wi-Fi network established by a travel router (IEEE 

802.11ac).  
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A Ground PC is used to run the GUI and store images in a repository. The Dell Latitude 

5430 was selected, as it is rugged to survive any moisture or physical stress from operating 

outdoors. The has been able to effectively run 

the GUI with minimal latency or crashing.  

4.1 Payload Equipment 

Table 4 below lists the equipment used in the payload and the Ground Station. The features 

of the equipment as well as the purpose that each piece fulfills is included. 

Table 4: Payload Equipment

Type Name Features Purpose 

Laptop Dell 
Latitude 
5430 

Semi-rugged with enhanced 
battery life 
Intel Core i5 1145G7 /2.6 GHz 
1 TB SSD NVMe Class 40
16GB, 2x8GB, 3200 MHz DDR4 
RAM 

It runs the Smart Defection 
Detection Interface 
The router is powered using 
an USB connected to the 
laptop 
Its hosts the AI training 
processes for defect 
detections 

Microcomputer Nvidia 
Jetson NX 

CUDA-enabled parallel 
computing capability 
384 NVIDIA CUDA® Cores, 48 
Tensor Cores, 6 Carmel ARM 
CPUs 
Delivers up to 14 TOPs for AI 
applica tions in 10W power 
utilization 

Its host the AI test processes 
for defect detections
The two sensors are 
controlled using this 
system-on-module 
Establishes a connectivity 
with the laptop when both in 
same network

Visual Camera 
with Lens 

Arducam 
477P HQ 
Camera  
Board 

Lens: 

Arducam 

C-Mount 

Lens 

Maximum still resolution: 4056 × 
3040 
30fps@Full 12.3MP 
Supports NVIDIA Argus Camera 
plugin for H264 encoding, JPEG 
snapshots 
C-Mount Lens: 
16mm Focal Length 
Manual Focus and Aperture 
Adjustment, F1.4 to F16 

Provides live visual camera 
stream 
Captures visual image for 
AI processing 
Lens wide aperture allows 
for very deep depth of field 

Thermal Sensor Teledyne 
FLIR 
Boson 

Resolution: 640x512 
12 µm pixel pitch VOx 
microbolometer 
Tempera ture rating: -40 °C to 
+80 °C
Low power consumption around
500 mW

Provides live thermal 
camera stream 
Captures thermal image 
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For rugged construction 

Gimbal Gremsy 
Mio 

Carries payload up to 400g 
Lightweight 

Allows stabilization of the sensors to 
prevent motion blur 

Router GL.iNet 
GL-AR750 

AC VPN Travel Router 
300Mbps(2.4GHz) + 
433Mbps(5GHz) Wi-Fi 

Establishes a  cryptographic Wi-Fi 
network connection between the 
microcomputer and the laptop

Battery HRB 4S 
Lipo 
Battery 

It is needed for powering up the 
microcomputer and the gimbal 
during flight 

Battery Charger Hobby Fans 
B6 Balance 
Charger 

For charging the batteries in 
balanced charged mode for short-
circuit, overcharge, overcurrent and 
overheat protection. 

4.2 Power Consumption 

Table 5 lists the power consumption of the electronic devices located on the payload. Jetson 

power consumption was captured as the worst-case during operation. 

Table 5: Power Consumption

Component Max Power Consumption 

(W) 

Voltage Range 

Jetson 12 9-19

Visual Camera 1 (from USB) 

Thermal Camera 0.5 (from USB) 

Gimbal 8.4 14-52

Total 21.9 

The payload voltage ranges allowed for either a 14.8V or 18.5V LiPo battery. For 

reference, each LiPo battery cell operates at 3.7V, so adding LiPo cells in series allows for 

voltage values at multiples of 3.7V. Several batteries were assessed based on weight, 

capacity, and voltage. Table 6 lists these parameters, and a ranking was provided based on 

the most ideal parameters. Ultimately, a low weight battery was selected that will still allow 

for 121 minutes of operation. This time is most often beyond the amount of time that most 

UAVs can fly, so this operating time is acceptable.  

Table 6: Battery Comparison
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Voltage Capacity 

(mAh) 

Minutes of 

Operation 

Weight (g) Price Final Rank 

14.8 3000 121.6 297 $32 1 

18.5 4000 202.7 495 $54 2 

14.8 4000 162.2 403 $45 3 

14.8 5200 210.8 470 $42 4 

14.8 3300 133.8 318 $36 5 

14.8 5000 202.7 492 $54 6 

18.5 5000 253.4 608 $72 7 

4.3 Custom Modeled Payload Fastening System 

To carry the required payload on the DJI Inspire 2 Drone, attachments needed to be 

fabricated to safely fasten the payload to the drone and not hinder operation. To do this, 

prototypes were designed and modeled on AutoCAD, imported into GrabCAD Print for 

formatting, then transferred via USB drive to the StrataSys F370 composite 3D printer to 

be printed using ABS M30 material. Details on the F370 and ABS M30 material properties 

are included in the appendix. 

One of the prototypes housed the cameras. It was designed to be fully enclosed and to 

minimize camera movement and foreign material contamination while the drone is 

operating. A classic half-hinged clipping design was employed to be able to accomplish 

this. Additional attributes of the design include cord accessibility for both cameras while 

the box is still closed and multiple mounting locations to mount the box to the gimbal. 

Below are images of this design.  Annotated drawings are included in Appendix A, Section 

2.
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Figure 16: Prototype Housing 

Figure 17: Prototype Housing Inside 

Another prototype helped fasten the power supply and onboard computer. The goal of this 

design was to allow plenty of air flow so the power supply and computer would not 

overheat. Additionally, it was important to make sure this design did not interfere wi th any 

Unfortunately, the detection 

system for under the drone is partially impeded by the design due to limitations in cable 

reach, overall drone stability (or affecting the Center of Gravity too severely), and the 
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awkward size and geometry of the Jetson and power supply . A three-piece mounting 

bracket was designed to be able to fasten the Jetson/Power supply housing to the drone. 

They were designed to maximize stability with the limited cross section area available due 

 Figure 18 is an image of the designs. Annotated drawings are 

included in Appendix A, Section 2. 

Figure 18: Gimbal Adapter 1 

Finally, an adapter was also needed to be able to attach the gimbal to the drone since the 

gimbal used was not designed by DJI, thus preventing the proper attachment interface 

required.  To accomplish this, 5 pieces were required.  Two of them were the main gimbal 

housing that is meant to hold the gimbal in place on the drone while allowing free 

movement of the gimbal and access to each of the required ports on the gimbal.  The other 

three pieces were designed to mount the gimbal and gimbal housing to the damper that is 

on the drone.  The goal was to make this as stable as possible while still allowing 

functionality of the damper to provide further stabilization to the cameras while the d rone 

is in flight.  Below is an image of the pieces for the design.  Annotated drawings are 

included in Appendix A, Section 2. 
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Figure 19: Gimbal Adapter 2 

After inserting all components into their respective housing and attaching them to the drone 

with their respective brackets, the final full design is assembled (Figure 20). 

Figure 20: UAV Integration
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4.4 Validation  

4.4.1 System Validation in Controlled Environment 

 A demo filed test has been simulated at the Civil Engineering High Bay facility, University 

of North Dakota.  A corroded steel plate has been clamped on a column to replicate the 

scenario in the field. In addition to this, bolts were also attached to the column without nuts 

to simulate the defective bolts in the real steel structures. The lighting condition was not as 

natural as the sunlight, and this might lead the model to misdetection in case of corrosion. 

The inspection demo with the results is reported here in Figure 21-22. One the other hand, 

the low lighting condition made missing bolt detection challenging without use of AI model 

(Figure 22b). 

(a) (b)
Figure 21 (a)& (b): Pre-flight condition checking at Lab 

(a)  (b) 

 Figure 22 (a)& (b): Loosen Bolt and Corrosion detection by the AI models 
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4.4.2 System Validation with Field Test 

The outdoor defect detection mission with the payload mounted on UAS has been 

completed. In this section, an example of model performance in defect detection was 

reported for the corrosion model only, since the inspected pole did not have any fatigue 

crack or bolt issues. The detection results are reported in this section (Figures 23-27). Out 

of 32 split sub-images, 8 truly have corrosion. The corrosion model correctly detected 5 

sub images as corroded but falsely indicated 3 images as uncorroded. The reason for this 

misdetection could be the ratio of corroded (approximately 20%) and background 

(approximately 80%). The inspector was able to correct the miss detections using GUI. 

This demonstrated the successful interactive functionality of the GUI, which allowed the 

inspector to correct the model detection output.  

The time required for the processing functions of the system is mentioned in Table 7.  

The battery voltages were taken before and after the test. Because the voltage of a LiPo 

battery needs to be above 3.2V per cell, the operator must ensure that the voltage does not 

drop below that value. The payload ran at approximately full load for about 15 minutes and 

depleted 0.22v. Therefore, the payload depleted the battery at about 14.7mV per minute. 

Assuming a starting charge of 4.1v and an acceptable margin of 0.1v about 3.2v, the battery 

should be limited to only running the payload long enough to drop 0.8v. This equates to 

about 54 minutes, but due to battery depletion over time and adding more margin, this limit 

should be reduced to 45 minutes. Because it takes setup time before and after the test, the 

45 minutes. 

Figure 23:Inspection Location, 3526 Gateway Drive, Grand Forks, ND  
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Figure 24: (a) &(b) Pre-flight condition checking 

(c) (d) 

Figure 25: (c) &(d) Inspection team during the outdoor flight 

 (a) (b) 
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 (a) 

(b) 

Figure 26: (a) Corrosion detection results (b) confusion matrix 

      (a)                              (b) 

Figure 27: Saved image in repository after completing the inspection (a) Corrosion (b) Crack 

& defective bolt 

Table 7: Flight Datasheet 

Predicted 
TRUE FALSE 

Actual 
TRUE 5 3 
FALSE 3 21 

TP FP 
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Mission Phase Parameter Measurement 
Pre-Flight Payload Battery Voltage 4.09 v per cell 

Flight Visual Image Capture Process Time 9 second (Approximate) 

Flight Corrosion Process Time 23.846 seconds 

Flight Crack Process Time 26.185 seconds 

Flight Bolt Process Time 31.749 seconds 

Flight All process 83 seconds 

Post-Flight Payload Battery Voltage 3.87 v per cell 

5. Limitation and future work

Although the developed payload-equipped UAS improves on the current inspection 

system, it has some limitations. The UAS can be operated only when the environmental 

conditions such as position of cloud, presence of wind condition etc. satisfy the FAA 

recommendation. This requirement may hinder the inspection in North Dakota where the 

environmental conditions change abruptly.  

 All the AI models are developed with enough datasets. However, the datasets were not 

diversified as many defective poles were already replaced or over-coated. For example, the 

corrosion model was developed with the images collected from Grand Forks and Fargo. 

Most of the inspected poles painted yellow in color. So, 90% of images with corrosion are 

with yellow color structure. Training of the model on the specific color may be one of 

causes of misdetection. However, the provision of retraining will give the opportunity to 

update the model to be more robust with new annotated data from the field.  

The processing times reported for the AI models were longer than expected. This is mostly 

due to the remote processing of these models occurring at the microcomputer. This could 

be mitigated by the operator limiting the number of areas of interest on which models are 

run for inspection.  Also, the operator may consider moving to a new area of interest while 

the previous area is being evaluated by the AI models. The live streaming shown on the 

GUI can occur while the models are running. Another limitation of the payload is that the 

housing takes time to assemble and disassemble. A more robust design may be considered 
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if these times are an issue for the inspection. Future work could improve the processing 

time by re-architecting the system to run the models on the laptop. If this would occur, a 

laptop with greater processing power would be more optimal.   
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5 User Guide 

5.1 Introduction 

Before beginning this User Guide, it is recommended to understand the hardware and 

software components and their integration. This section also will guide through the initial 

steps to get started with the smart inspection process. 

5.2 Hardware Components 

Table 8: Hardware Components

Type Name Features Purpose 
Laptop Dell Latitude 5430 Semi-rugged with 

enhanced battery life 
Intel Core i5 1145G7 
/2.6 GHz
1 TB SSD NVMe Class 
40 
16GB, 2x8GB, 3200 
MHz DDR4 RAM 

-Runs the GUI for
Smart Defect Detection
-Powers the router
-Hosts the AI training
processes for defect
detections

Microcomputer Nvidia Jetson NX CUDA-enabled parallel 
computing capability 
384 NVIDIA CUDA® 
Cores, 48 Tensor Cores, 
6 Carmel ARM CPUs 
Delivers up to 14 TOPs 
for AI applications in 
10W power utilization 

-Hosts AI processes for
defect detection
-Controls the payload
cameras
-Establishes
connectivity with the
laptop when both in
same network

Visual Camera with 
Lens

Arducam 477P HQ 
Camera Board

Lens: Arducam C-

Mount Lens 

Maximum still 
resolution: 4056 × 3040 
30fps@Full 12.3MP 
Supports NVIDIA 
Argus Camera plugin 
for H264 encoding, 
JPEG snapshots 
C-Mount Lens:
16mm Focal Length
Manual Focus and
Aperture Adjustment,
F1.4 to F16

-Provides live visual
camera stream
-Captures visual image
for AI processing 
-Lens  wide aperture
allows for very deep
depth of field

Thermal Camera Teledyne FLIR Boson Resolution: 640x512 
12 µm pixel pitch VOx 
microbolometer 
Temperature rating: -40 
°C to +80 °C 

-Provides live thermal
camera stream
-Captures thermal 
image 
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Low power 
consumption around 
500 mW 
For rugged construction 

Gimbal Gremsy Mio Payload upto 400g 
Lightweight

-Allows stabilization of
the sensors to prevent
motion blur

Router GL.iNet GL-AR750 AC VPN Travel Router 
300Mbps(2.4GHz) + 
433Mbps(5GHz) Wi-Fi 

-Establishes a 
cryptographic Wi-Fi 
network connection 
between the 
microcomputer and the 
laptop 

Battery HRB 4S Lipo Battery -Powers microcomputer
and the gimbal during
flight

Battery Charger Hobby Fans B6 
Balance Charger 

-Charges the batteries in
balanced charged mode
for short-circuit,
overcharge, overcurrent
and overheat protection.

Figure 29 shows the hardware components and how they are interconnected. Please refer to 

the respective hardware documentation for detailed system requirements and compatibility 

information. 

Figure 28: System Connections
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5.3 Software Components 

Table 9 lists the software components used on the laptop and microcomputer. Please refer 

to the respective software documentation for detailed system requirements and 

compatibility information. 

Table 9: Software Components 

Segment Name Version Usage

Laptop 

GStreamer 1.0 
GStreamer 1.0 
(Development Files) 

1.20.2 -Pipeline-based
multimedia framework
-Used for live video
streaming and image
transfer

gTuneDesktop 1.4.9.1 -Configures the gimbal
Python 3.9.7 -Controls peripheral

features of the GUI
Visual Studio 
Community 2022 

17.3.5 -Platform on which the
GUI is developed

C# 10.0 -Core code of the GUI

.Net Framework 4.7.2 -Framework on which
the GUI runs

Microcomputer Python n/a -Core code of the

Jetson

5.4 System Architecture 

The System Block Diagram is shown below. The left side of the diagram is for the 

hardware/software located on the ground, while the right side is for the hardware/software 

located in the air, on the UAV. 
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Table 10: System Block Diagram 

The payload described in this document works separately from the stock UAV hardware 

and software. The only interaction is the control of the gimbal that holds the payload 

should be commanded by the UAV flight controller. The method for accomplishing this 

varies, depending on the UAV controller, but usually is a simple setting in the software 

provided by the flight controller. 

within the captured images on command. The data and commands between the payload 

computer and Ground PC are transmitted over a Wi-Fi network established by a travel 

router (IEEE 802.11ac).  

A Ground PC is used to run the GUI and store images in a repository. The PC was selected 

to be rugged to survive any moisture or physical stress from operating outdoors.  

5.5 Startup Instructions 

Before initiating the inspection, it is crucial to follow a series of steps to ensure a seamless 

and successful operation. These steps will help set up the necessary connections and 

configurations for controlling and monitoring the drone's payload, which is equipped with 

advanced defect detection capabilities.  
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Power on the laptop and make sure it remains on a stable surface to ensure smooth 
operation. 
Establish a physical connection between the laptop and the router to enable data transfer. 
Allow the router to activate the 5G WIFI network (green light should be on), which is 
essential for seamless communication between devices.  

Connect the laptop to the 'NDDOT_ROUTER_5G' network, providing internet access for 
further actions. 

Figure 29: Wi-Fi network 

Ensure the UAS has met all the pre- and post-flight requirements (Follow general operation 
and safety guidelines recommended by FAA). 
Attach the gimbal, which is the mechanism responsible for stabilizing and controlling the 
payload, to the drone securely.  
Power up both the microcomputer and the gimbal using the designated payload batteries to 
activate their functionalities.  
Once the drone is airborne and stable, launch the gTuneDesktop app on the laptop.  
Verify gimbal connectivity and controls using the app controls.  
Open the Smart Defect Detection Interface app (GUI) on the laptop, specifically designed 
for controlling the payload's defect detection capabilities. 
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Figure 30: GUI Launch Page

Navigate to the Payload Control page within the app's interface to access the relevant 
controls  

Figure 31: Payload Control Page

Click on the 'Connection Check' button within the Payload Control page. A successful ping would 
indicate that the connection between the laptop and the payload is established and ready for 
inspection.  

Figure 32: Payload Ping

5.6 Operation Instruction 
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5.6.1 Functionalities of the GUI 

5.6.1.1 Initial Launch page 

This page is the initial launch page to the GUI. The initial launch page gives access to the 

payload control application and desktop application.  

Figure 33: GUI Launch Page 

Table 11: GUI Launch Page Description 

Button Name Button Functionality 

Payload App -Launches the Payload Control application for defect
detection

Train Models -Launches the Train Models application

Close Program -Closes the GUI application

5.6.1.2 Payload Control Page 

The Payload Control page functions as a primary hub, giving access to all the tools and 

needes to successfully control the payload for detecting defects in the target structure. The 

purpose of this section of the user guide is to give an understanding of the Payload Control 
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capabilities. Section 5.6.1.6 will guide through the step-by-step process for using the 

Payload Control features effectively during the field inspections. 

Figure 34: Payload Control Page Details 

The Payload Control page consists of the following sections:

 Camera Controls: 
This section gives access to use the live streaming and image capture feature using the 

visual and thermal camera. 

 Run Processes: 
This section can run the preferred AI model or models for detecting various defects. With 

a focus on enhancing safety and reliability, the available AI models cater specifically to the 

identification of corrosion, cracks, and bolt issues. The user has the flexibility to select any 

one AI process or a combination of processes. This gives the ability to modify the fault 

detection strategy to fit the particular traits of the area of ancillary structure under study. 

Utilize Run Process button drop-down flexible option to tailor the defect detection 

procedure using the AI process or processes that work best  for the mission. The Run 

Process button has the following drop-down options: 
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Table 12: Run Process Options

Tick Button Name Tick Button Functionality 
All Defects -Runs all the AI processes

Corrosion -Runs the Al process for detecting corrosion defects

Crack -Runs the Al process for detecting crack defects
Bolt -Runs the Al process for detecting bolt issue defects

The user can choose any one or combination of AI processes they wish to run. 

 Processing Results 
This section gives access to the output of all the AI processes. The user can also toggle 

between the output screen for multiple AI process runs. This section provides the real-time 

and interactive capability to examine the predictions made by the AI processes. The output 

of the AI processes will be imaged with the defected regions marked on the image. 

Additionally, the user can add missed regions of defects and edit incorrectly categorized 

regions of defects. This serves two purposes: it allows the user to use their expertise to 

store accurate images to the repository and it also provides accurate retraining feedback for 

the AI processes. The output image generated by each AI process is color coded based on 

the defect type. The color codes are as following: 

Corrosion: Blue  Crack: Red Bolt Issue: Yellow 

 Corrosion and Crack AI Processes 
The AI processes for Corrosion and Crack use a similar method of defect inspection and 

annotation. These AI processes mark the entire image into small rectangular tiles of fixed 

dimensions. The tiles with defected region of interests are slightly color-shifted. This is for 

better and easier identification of the defected regions. The color shift is necessary in the 

event that a large region of tiles is flagged for defect and the tile outline alone becomes 

ambiguous between adjacent boxes. These tiles are interactive, as the user can check and 

uncheck them depending on their expertise that the AI process falsely classified or missed 

classifying the defect. 
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Figure 35: Crack Processing Feedback 

 Bolt Issue AI Process 
The AI process for bolt issues is used to identify loosening and missing bolt faults. By 

using AI, a rectangular region of interest is drawn around any missing or loosened bolts. 

The bolt or bolt hole being inspected determines the size of these rectangula r regions of 

interest. The user can draw, remove and redraw the areas of interest depending on their 

expertise that the AI process falsely classified or missed classifying the fault. 
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Figure 36: Bolt Processing Feedback

Image View 
This section grants access to view the latest image captured by the visual and thermal 

cameras, along with the ability to view the latest masked image. The buttons provided 

under this section offer adaptability, allowing the user to set the visual image or re-crop it 

for rerunning AI processes on the existing visual image. With just a click, the user can 

examine the visual and thermal images, analyze the masked image for better marking of 

defect region of interests, and effortlessly manipulate the visual image for optimized AI 

analysis. Utilizing the strength of these capabilities on the Payload Control page will 

simplify and improve the ancillary structure defect detection process. 

Miscellaneous 
The Miscellaneous section offers a collection of graphical user interface centric control 

options, providing convenient functionalities for enhanced user experience. Within this 

section, the user can find options such as saving output images, accessing the repository, 

performing connection checks with the payload, and clearing all selections. These will not 

only provide easy preservation of the generated images for future reference or 

documentation purposes but also will provide quick access to a centralized repository. The 

Connection Check button is a crucial functionality and must be done below every flight. 

This will allow the user to verify the connectivity status with the payload microcomputer 

and the laptop, ensuring a stable and reliable connection. Lastly, the Clear All Selections 
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button conveniently resets any selected settings or parameters, enabling a fresh start or 

facilitating a streamlined workflow. These graphical user interface-centric controls 

enhance the overall usability and efficiency within the application. 

Table 13: Miscellaneous GUI Buttons 

Button Name Button Functionality  
Start Live Streaming - Visual -Starts live streaming from visual camera
Visual Image Capture -Takes a picture from the visual camera
Start Live Streaming - Thermal -Starts live streaming from thermal camera
Thermal Image Capture -Takes a picture from the thermal camera

Run Process -Chooses the AI process/processes to run

Corrosion -Visualizes the output of the AI model for
corrosion defect

Crack -Visualizes the output of the AI model for crack
defect

Bolt Issue -Visualizes the output of the AI model for bolt
issue defect

Visual Image -Visualizes the last captured image from the visual
camera

Thermal Image -Visualizes the last captured image from the
thermal camera

Cropped Visual Image -Visualizes the last cropped visual image

Finalize Boxes -Saves the final inspector annotated and approved
selection of the defect output shown on the screen

Repository -Saves the final annotated output shown on the
screen to a repository

Connection Check -Checks whether a connection between the laptop
and the microcomputer on the payload has been
established

Clear -Clears the current process run and set all the
values to default

Close Program -Closes the GUI application and turn off the
microcomputer on the payload

Previous Menu -Goes back to the Initial Launch page

5.6.1.3 Image Masking page 

The Image Masking page provides the functionality to crop a specific area of interest within 

the visual image offering a high level of control and customization. This subsequently 

becomes the focus for applying the AI process/processes of choice. This feature offers 

flexibility in running AI processes, as it enables users to focus on a particular region within 

the image for analysis. By creating the mask, the user can define and isolate the desired 
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area, fine-tune, and optimize the analysis allowing for targeted and precise application of 

AI algorithms. This capability enhances the efficiency and accuracy of AI processing by 

concentrating computational resources on the specific region of interest. 

Figure 37: Image Masking Page

Button Name Button Functionality

Save Selection -Saves the cropped selection of the visual image

5.6.1.4 Repository Page

The Repository Page is specifically designed to provide inspectors with a visual overview 

of past inspections, showcasing images of three types of detected defects: corrosion, cracks, 

and bolt issues. This page serves as a centralized platform to catalog and organize the visual 

evidence of these defects detected after the AI processing and appropriate annotations 

given by the inspectors. The user may quickly access and analyze the detected defects for 

additional investigation and documentation using this page. The repository allows for 

efficient retrieval and comparison of defect images, enabling the user to track the 

progression of corrosion, monitor crack growth, and assess the severity of bolt issues over 

time. In addition, the page also features a save button that allows the user to save the 
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displayed image. This will allow the user to easily attain and utilize the defect images for 

documentation, reporting, or further analysis outside the software.

Figure 38: Repository Page

The user can choose the type of defect repository they wish to view using the Select Defect 

Type drop down options. The Select Defect Type has the following drop-down options:

Figure 39: Select Defect Type

Option Name Option Functionality

Corrosion To view the defects from corrosion repository

Crack To view the defects from crack repository

Button Name Button Functionality
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Previous -Views the previous image in the selected defect
repository

Next -Views the next image in the selected defect
repository

Save As PNG -Saves the image as PNG in the download folder
Previous Menu -Goes back to the Payload Control page

5.6.1.5 AI Process Retraining Control page 

Figure 40: Retraining Page

Button Name Button Functionality  
Image Dataset -Optimizes the image dataset for the selected AI

process for retraining
Train Model -Trains the selected AI process
Transfer to Payload -Transfers the trained AI process model file to the

microcomputer on the payload
Connection Check -Checks whether a connection between the laptop

and the microcomputer on the payload has been
established

Previous Menu -Goes back to the Initial Launch page
Close Program -Closes the GUI application and turn off the

microcomputer on the payload

The user can choose the type of AI process they wish to train using the Select Defect Type 

drop down options. The Select Defect Type has the following drop-down options: 
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Figure 41: Select Defect Type 

Option Name Option Functionality 

Corrosion -Runs the train Al process for detecting corrosion
defects

Crack -Runs the train Al process for detecting crack
defects

Bolt -Runs the train Al process for detecting bolt issue
defects

5.6.1.6 Step-by-step Instructions for Inspection Mission 

1. On the launch screen of the GUI, click Payload App to start.
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2. Start live streaming from visual and/or thermal cameras by clicking the
corresponding buttons shown below.

i. Place the new popup window(s) containing live streams to a preferred
location on the screen.

3. Start the flight.
4. Any area of interest on the target structure can have a still image captured from

either the visual or thermal camera. Click the corresponding button shown below.
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5. If the inspector suspects one or more of the three defect categories (Corrosion,
Crack, or Bolt Issue) may be present, they can run a defect detection process to

one or more of the defect detection processes can be checked to run. After selecting 
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6. The processing may take several minutes to run. The steps and output of the
processing can be shown in the Processes box.

7. When the processing is complete, the GUI will display the areas of the image that
contain the selected defects. The GUI provides interactive controls to add or remove
defects, if the inspector determines the processes are incorrect. These controls are
explained in Section 5.6.1.7 for Corrosion and Crack defects and Section 5.6.1.8
for Bolt defects.

8. Once the defects are finalized, the images can be saved to a repository for future
review. Section 5.6.1.4 explains saving the images to a repository.

9. These steps can be repeated for all other areas of interest in the target structure.

5.6.1.7 Interactive functionality for Corrosion and Crack defects 

The Interactive GUI functionality works the same for both Corrosion and Crack defects. 

The only difference is Corrosion defects are identified by blue boxes, while Crack defects 

are identified by red boxes. 

When the Defect Detection process for Corrosion and/or Crack are run on the current 

image, the Interactive GUI will divide the image into an 8 x 4 grid of sub-images to prepare 

for processing. When the processing is complete, the Interactive GUI will place a box 

around each sub-image that contains the defect(s). If the inspector disagrees with the 
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identified defect locations, they can change the selected boxes before storing the image in 

the repository. They can de-select a sub-

and the box will be removed. Also, they can select a sub-image that they believe does 

An example is provided in Figures 35 and 36 below. In Figure 35, the Corrosion process 

identified defects in the following sub-image locations (column, row coordinates from top 

left): (5,1), (6,1), (7,1), (8,1), (4,2), (1,3), (3,3), (4,3), (5,3), (2,4), (6,4), (7,4), and (8,4). 

However, Figure 36 shows the result of the inspector disagreeing with the process. They 

de-selected sub-images (5,1), (6,1), and (8,4) meaning the model falsely selected these sub-

images as defective. The inspector also selected sub-images (4,1), (3,2), (5,2), etc. meaning 

the process falsely did not identify these sub-images as defective. 

Figure 42: Image after Corrosion Process 
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Figure 43: Image After Corrosion Process and Inspector Interaction 

When the inspector is finished with modifying the defect boxes on the image, they can save 

the image to the repository, which will include any changes made by the inspector. The 

inspector can repeat the process of modifying the boxes of the current image a nd saving to 

repository.   

5.6.1.8 Interactive functionality for Bolt defects

The Interactive GUI for Bolt Issues works differently than Crack and Corrosion. When the 

Defect Detection process for Bolt Issues is run on the current image, the Interactive GUI 

will identify the exact location of each Bolt Issue, without having to divide  the image into 

sub-images. Yellow bounding boxes will be drawn around each identified defect, with 

numbers listed on the top left corner of each box. The size of the boxes vary, depending on 

the sizes of the defective areas. When the processing is complete, the pop-up box shown 

below appears.  
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If any defects appear to be incorrect, the inspector can click yes, otherwise they can click 

no. If yes, is clicked, the pop-up box below appears. The inspector enters in the box 

numbers to be deleted, separated by a comma (example 1,2).

-up is closed. The Bolt

Issues process would need to be re-run to get to this pop-up again to delete the boxes. After 

these boxes are closed. The inspector can draw boxes around any areas tha t they determine 

to be a Bolt Issue. The boxes can be any size and can be drawn in any direction. The 

inspector just needs to click and hold in one corner of the desired box, then drag the mouse 

to the opposite corner of the box. After each new box is drawn, the pop-up box below is 

shown. The inspector can click Yes to save the box, or no to delete the box.

When the inspector is finished with modifying the defect boxes on the image, they can save 

the image to the repository, which will include any changes made by the inspector. The 
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inspector can repeat the process of modifying the boxes of the current image and saving to 

repository. An example image with identified Bolt defects is shown below. 

Figure 44: Bolt Defect Box Feedback 

5.6.2 Step-by-step Instructions for Model Retraining

On the launch screen of the GUI, click Train Models  to start.  
On the Train Model page, choose the type of defect training model to train using the Select 
Defect Type drop down options.  
Choose Corrosion or Crack. 
Click on the Image Dataset  button to view the message for choosing the training dataset. 
Inspector needs to choose the images from wc/woc folder 
(c:/Project_Parent/Model_training/corrosion_dataset or 
c:/Project_Parent/Model_training/crack_dataset) for retraining. The selected images 
should be stored in the respective training dataset. For example for corrosion : 
C:\Project_Parent\Model_Training\corrosion\Corrosion\Submission_nov_2\Dataset\train\
WC or WOC 
For crack: 
C:\Project_Parent\Model_Training\crack\Pythoncode\caltec256subset\train\a(WC) or 
b(WOC) 
Click on the Train model  button to start the training. A black consol window will appear 
which will highlight the progress of the training. Please do not turn off the consol window 
or lock the laptop screen. It will take nearly 2 hours to complete the training for corrosion 
and around 45 mins for crack. 
Once the black console window automatically disappears, it means the model has been 
trained successfully. Corrosion model will be training for 50 epochs and Crack model will 
be training for 30 epochs. 
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Now click on Previous Menu  button to return to the launch page of the GUI. 
Payload App within the app's interface. 

Click on the 'Connection Check' button on the Payload Control page. A successful ping 
would indicate that the connection between the laptop and the payload is established and 
ready for file transfer. 

o return to the launch page of the GUI.

Reselect the defect model type from the Select Defect Type drop down options 
Click on Transfer to Payload button. This button takes a backup of the existing model 
prediction file in the Jetson board and transfers the newly generated model file to its 
necessary folder in the Jetson board. 

6 Technical Section 

The following sections in the User Guide describe the design features of the Payload and 

GUI. These are not crucial to operating the system. If troubleshooting is necessary, these 

sections are a good resource to understand the system design. 

6.1 Microcomputer wireless connectivity 

To 

given the highest priority level of 999. This prioritization means that when multiple 

above others. Consequently, as soon as the microcomputer boots up, it will promptly 

intervention. This streamlined setup ensures a convenient and reliable connection between 

the microcomputer and the laptop, facilitating efficient operation and maximizing 

productivity during the inspection process. If the router changed to factory setting, it can 

6.2 Auto connectivity between laptop and the microcomputer 

SSH password less login is used here to establish a password less and synchronous mode 

of communication between the laptop and the microcomputer. It is an effective 

authentication method for tasks like file synchronization, and server access. This method 

relies on a pair of public and private keys. It is set up by first ly generating a key pair using 



P a g e  | 62 

the ssh-keygen command. Then, after creating an SSH directory on the server, public keys 

are uploaded to the server using ssh-copy-id command on Linux client or scp command on 

Windows client. Next, connections are tested after configuring the SSH agent permissions 

for the .ssh directory and the authorized_keys file. Once completed, a passphrase-free 

passwordless connection to the server is established, enhancing security and convenience. 

Here both the Windows OS on the laptop and the Linux OS on the microcomputer act are 

set with the passwordless SSH login. In the Windows system the .ssh directory is located 

C:Users\NDDOT .ssh directory is located under 

the root directory. 

** If the router goes back to the factory setting, please check docs.gk-inet.com for resetting 

6.3 Form 1 Overview 

Form 1 is the main form of the GUI that the inspector will use. It commands the payload, 

shows the images from the payload, and includes interactive controls that the inspector can 

use to modify and store defect data. The back-end code files are Form1.cs and 

Form1.Designer.cs.  

Form1.Designer.cs provides the settings for all the GUI elements (buttons and text boxes 

for example). Most of the lines in this file were automatically generated by Visual Studio, 

so not much annotation is present.  

Form1.cs has all the other code for handling inputs and outputs of the GUI. All the methods 

I processes. 

A large section of Form1.cs code is used for handling the interaction between the inspector 

and the GUI for modification of defect data. The three-

modified frequently and is used for saving the crack and corrosion defect loc ation to ensure 

the information is retained when the GUI is changing the currently displayed image. When 

the inspector changes the image to be displayed on the GUI, the new image is re -printed 

on the GUI screen and any defect boxes are re-drawn based on the saved data within the 

types as follows: 
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0 = Corrosion 
1 = Crack 
2 = Bolt 

images for storage in the repository (as explained in the section on Form 5). If the image 

contains defect boxes, the images saved in the repository will include those boxes. 

6.4 Form 4 Overview 

Form 4 is the form that allows the inspector to crop a captured image to run a reduced 

subset through the AI processes. The Form takes the current image and allows the inspector 

to click and drag their mouse over the regions that they would like to crop. The form will 

prompt them upon creating the crop if they like it or would like to redo the cropping. To 

allow cohesion with the Crack and Corrosion models, the crop extends the crop region to 

cover the 8 x 4 grid of boxes used for Crack and Corrosion defect classification. This form 

does not require many lines of code, and thus is able to run and close quickly when called. 

6.5 GStreamer 

GStreamer is an open-source multimedia framework used to create versatile multimedia 

applications. By constructing pipelines that connect different plugins, developers can 

process and transmit audio and video data in a flexible and modular manner. With sup port 

for a wide range of multimedia formats and protocols, GStreamer is highly customizable 

and extensible, making it a popular choice in the Linux ecosystem. Its extensive 

documentation, tutorials, and community support empower developers to leverage its 

capabilities for creating diverse multimedia applications and solutions. 

GStreamer can be used to create both the server and client components of a streaming 

system. The server-side component typically involves designing a GStreamer pipeline that 

captures audio and video from a source (e.g., camera), encodes the data, and strea ms it over 

a network protocol such as RTP (Real-time Transport Protocol) or RTSP (Real-Time 

Streaming Protocol). This pipeline can be set up on a server machine. On the client -side, 

another GStreamer pipeline is designed to receive the streamed audio and v ideo data from 

the server. This pipeline decodes the received data and can be configured to play it back, 

display it on a screen, or process it further. 
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Please refer to the Gstreamer official documentation for detailed system requirements and 

compatibility information at https://gstreamer.freedesktop.org/. 

6.6 Visual image capture 

The visual image capture using the Arducam 477P HQ camera is executed using the python 

Visual_Capture.py

with a timestamp in a designated folder. It then performs some operations on the captured 

image, such as copying it to another folder, renaming it, resizing it, and saving the resized 

versi Image_Save_Visual.sh

Visual_Capture.py  

The breakdown of the code executed on the microcomputer is as follows:  

1. The cmd variable contains the command to capture an image using the Arducam 477P HQ
camera.

2. It initially stores the image with the size, width = 1920 and height = 1080, and format of
jpeg.

3. The os.system() function is used to execute the entire command.
4. The image is saved in the path 

5. The current timestamp is obtained using datetime.datetime.now() and formatted as a string
with microsecond precision.

6. The captured image is renamed using os.rename() to include the timestamp in the filename.
7. The glob module is used to find all the JPEG files in the folder specified by folder_path.

The max() function is then used to find the most recently created file based on the creation
time os.path.getctime().

8. The most recently created file is copied to the 
/home/nddot/IMAGE_CAPTURES/RUN_FOLDER shutil.copy(). 

9. Similar to step 4, the most recently created file in the 
/home/nddot/IMAGE_CAPTURES/RUN_FOLDER glob and 

max(). 
10. The file is renamed to 1.jpg /home/nddot/IMAGE_CAPTURES/RUN_FOLDER

directory using os.rename().
11. The image is loaded using cv2.imread().
12. The height1 and width1 variables are calculated to obtain dimensions that are multiples of

227.
13. The image is resized using cv2.resize() with the calculated dimensions.
14. The resized image is saved as C.jpg in the 

/home/nddot/IMAGE_CAPTURES/RUN_FOLDER cv2.imwrite().

The images are numbered according to the date and time to consider the latest image for 

processing. The images are also rescaled to the multiple of 227 * 227 as the AI models 
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used for detecting corrosion and crack have 227 * 227 as the input shape of the image. The 

image file named C.jpg 

directory serves as the input image for running various AI models. It acts as a base image 

that undergoes processing either in its entirety or after being cropped depending on the 

inspector specific requirements of the AI models. As the AI models require input images 

to work with, C.jpg must be regularly updated with the latest content to ensure accurate 

and up-to-date results.  

6.7 Thermal image capture 

The thermal image capture using the Teledyne FLIR Boson camera is executed using the 

thermal_capture.py

saves it with a timestamp in a designated folder. It then performs some operations on the 

captured image, such as copying it to another folder, renaming it, resizing it, and saving 

the resized versi Image_Save_Thermal.sh

thermal_Capture.py  

The breakdown of the code executed on the microcomputer is as follows:  

1. The cmd variable contains the command to capture an image using the Teledyne FLIR
Boson camera.

2. It initially stores the image with the size, width = 640 and height = 512, and format of I420.
3. jpengc
4. The os.system() function is used to execute the entire command.
5.
6. The current timestamp is obtained using datetime.datetime.now() and formatted as a string

with microsecond precision.
7. The captured image is renamed using os.rename() to include the timestamp in the filename.
8. The glob module is used to find all the JPEG files in the folder specified by folder_path.

The max() function is then used to find the most recently created file based on the creation
time os.path.getctime().

9. The most recently created file is copied to the 
/home/nddot/IMAGE_CAPTURES/RUN_FOLDER shutil.copy(). 

10. Similar to step 4, the most recently created file in the 
/home/nddot/IMAGE_CAPTURES/RUN_FOLDER glob and 

max(). 
11. The file is renamed to 2.jpg /home/nddot/IMAGE_CAPTURES/RUN_FOLDER

directory using os.rename().

The images are numbered according to the date and time to consider the latest image for 

processing.  
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6.8 Visual image live streaming 

The smart GUI interface on the laptop displays the live stream captured by the Arducam 

477P HQ camera, which is connected to a microcomputer. The camera captures visual data, 

and this real-time video feed is transmitted to the laptop for viewing. For avail ing the live 

streaming capabilities, GStreamer has been used.  

The breakdown of the server end bash script  live_test.sh

is as follows: 

1. kill command is used to kill any process that is using port 5010.
2. The gst command is used to launch the gst-launch-1.0 utility with a pipeline for video

streaming.
3. It uses the v4l2src element to capture video from the specified camera device.
4. The image/jpeg format is selected with a width of 1920 and height of 1080, and a framerate

of 15 frames per second.
5. The tcpserversink element is used to stream the video over TCP, specifying the

microcomputer (host) IP address as 192.168.8.139 and the port as 5010.

The breakdown of the client end Windows batch script  gstreamer_client.bat

on the laptop is as follows: 

1. timeout command is used to pause the script execution for 4 seconds without displaying
any output on the console.

2. As the GStreamer binaries are installed in the location
C:\gstreamer\1.0\msvc_x86_64\bin cd command is used to change the current

directory to that directory.
3. The gst command is used to launch the gst-launch-1.0 utility with a GStreamer pipeline.
4. It uses the tcpclientsrc element to receive video from the microcomputer (TCP server)

running at 192.168.8.139 and port 5010.
5. The received video is then decoded using decodebin and displayed using d3dvideosink,

which renders the video using Direct3D on Windows.

The script prints the current time, waits for 4 seconds, and then prints the time again. It 

then changes the directory to the GStreamer installation directory and launches a 

GStreamer pipeline to receive and display video from a remote TCP server. 

Note: Ensuring that the IP addresses and ports specified in the scripts are appropriate under 

6.9 Thermal image live streaming 
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The smart GUI interface on the laptop displays the live stream captured by the Teledyne 

FLIR Boson camera, which is connected to a microcomputer. The camera captures thermal 

data, and this real-time video feed is transmitted to the laptop for viewing. For availing the 

live streaming capabilities, GStreamer has been used.  

The breakdown of the server end bash script  live_test_thermal.sh

microcomputer is as follows: 
1. kill command is used to kill any process that is using ports 5123 and 5021.
2. The gst command is used to launch the gst-launch-1.0 utility with a pipeline for video

streaming.
3. It uses the v4l2src element to capture video from the specified camera device.
4. The I420 format is selected with a width of 640 and height of 512.
5. The tcpserversink element is used to stream the video over TCP, specifying the

microcomputer (host) IP address as 192.168.8.139 and the port as 5123.

The breakdown of the client end Windows batch script gstreamer_client_thermal.bat

executed on the laptop is as follows: 

1. timeout command is used to pause the script execution for 4 seconds without displaying
any output on the console.

2. As the GStreamer binaries are installed in the location
C:\gstreamer\1.0\msvc_x86_64\bin cd command is used to change the current

directory to that directory.
3. The gst command is used to launch the gst-launch-1.0 utility with a GStreamer pipeline.
4. It uses the tcpclientsrc element to receive video from the microcomputer (TCP server)

running at 192.168.8.139 and port 5123.
5. The received video is then decoded using decodebin and displayed using d3dvideosink,

which renders the video using Direct3D on Windows.

The script prints the current time, waits for 4 seconds, and then prints the time again. It 

then changes the directory to the GStreamer installation directory and launches a 

GStreamer pipeline to receive and display video from a remote TCP server. 

Note: Ensuring that the IP addresses and ports specified in the scripts are appropriate under 

6.10 Data transfer from payload and laptop 

For transferring images, text and other necessary files in between the Linux system running 

on the microcomputer and Windows system running on the laptop, socket programming 

based on python is used. In socket programming for server and client data transfer , two 

separate programs are created. One acts as the server, and the other as the client. The server 
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establishes a connection to a particular port on a local IP address and waits for client 

connections. The server initiates a connection with the client once it connects. On the other 

hand, the client starts a connection to the server by giving it the IP address and port number. 

The client sends data to the server after the connection is established, and the server 

receives and processes that data. Data is often sent as streams of bytes during this client-

server conversation. Data is converted from the client into bytes and transmitted over the 

network to the server, which interprets and utilizes the data in accordance. The similar 

procedure is used by the server to deliver data back to the client.  

Python's socket module offers the tools needed to construct and maintain sockets for 

network communication, making it simple to design client-server data transfer. The 

breakdown of the server-end visual image transfer script  Server.py

microcomputer is as follows: 

1. The host variable is defined to specify the IP address of the server. In this case, it is set to 
192.168.8.139. 

2. The port variable is defined to reserve a specific port number on which the server will listen 
for incoming connections. It is set to 5020. 

3. The socket is bound to the specified IP address and port number using the bind() method: 
s.bind((host, port)). 

4. The socket starts listening for incoming client connections with a maximum backlog of 5 
pending connections using the listen() method: s.listen(5). 

5. The script enters an infinite loop (while True) to continuously handle incoming 
connections. 

6. When a client connects, the accept() method is called, which returns a new socket 
representing the connection and the client's address. 

7. The server receives data from the client using conn.recv(1024) command, where 1024 
specifies the maximum number of bytes to receive at once. 

8. The server opens the file 'C.jpg' in binary read mode ('rb').
9. The server reads the file in chunks of 1024 bytes using f.read(1024). 
10. The server sends each chunk to the client using conn.send(l). 
11. The loop continues until the entire file is sent. 
12. The file is closed after sending the entire content.
13. The connection with the client is closed using conn.close(). 
14. The script exits the loop and finishes execution.

 

The breakdown of the client-end visual image transfer script  Client_Visual_Camera.py

executed on the laptop is as follows: 

1. The script creates a client-side socket object using socket.socket(), which is used for 
establishing connections with the server. 

2. The host variable is defined to specify the IP address of the server to which the client wants 
to connect. In this case, it is set to 192.168.8.139. 
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3. The port variable is defined to reserve a specific port number on which the client will 
attempt to connect to the server. It is set to 5020. 

4. The client initiates a connection to the server using s.connect((host, port)), where the IP 
address and port are provided as a tuple to the connect() method. This step establishes the 
connection with the server. 

5. The client opens a file 'Visual_Img.jpg' in binary write mode ('wb') on the client-side to 
save the data received from the server. 

6. The client enters a loop to receive data from the server in chunks. 
7. The client receives data from the server in chunks of 1024 bytes using s.recv(1024). This 

method call blocks until data is received. 
8. If the received data is empty (i.e., the end of the file is reached), the loop breaks, indicating 

the end of data transmission. 
9. The client writes the received data to the file using f.write(data). 
10. The client closes the file after receiving the entire content. 
11. The client closes the connection with the server using s.close(), terminating the 

communication between the client and server. 
 

Below is the list of python files that indicate a server-client socket connection between the 

laptop and the microcomputer. 

 

Table 14: Python Socket Files 

Executable File 

on Laptop  
Server/Client 

Jetson: J 

Laptop: L 

Server/Client 

Executable 

File 

Server/Client Specific 

Python File Name 
Port Purpose 

Visual_Img.bat 

Server J 
Image_Save_

Visual.sh 
Server.py 

5020 

To transfer 

the captured 

visual image. Client L 
Visual_Image

_Client.bat 

Client_Visual_Camer

a.py 

Thermal_Img.ba

t 

Server J 
Image_Save_

Thermal.sh 
Server_Thermal.py 

5021 

To transfer 

the captured 

thermal 

image. 
Client L 

Thermal_Ima

ge_Client.bat 

Client_Thermal_Cam

era.py 

Corrosion.ba t 

Server J 

Corrosion_Pr

ocessing.sh 

Corrosion_Se

rver.bat (L) 

Server_Corrosion_Aft

er_Run.py 

5024 

-Transfers the 

excel file 

genera ted 

after running 

the AI model 

for corrosion 

detection 

Client L 
Corrosion_Cl

ient.bat 
Client_Corrosion.py 

Crack.bat Server J 

Crack_Proces

sing.sh 

Crack_Server

.bat (L) 

Server_Crack_After_

Run.py
5023 

-Transfers the 

excel file 

genera ted 

after running 



  
 

P a g e  | 70 

Client L 
Crack_Client.

bat (L) 
Client_Crack.py  

the AI model 

for crack 

detection 

Bolt.ba t 

Server J 

Bolt_Processi

ng.sh 

Bolt_Server.b

at (L) 

Server_Bolt_After_R

un.py 

5022 

-Transfers the 

excel file 

genera ted 

after running 

the AI model 

for bolt issue  

detection 

Client L 
Bolt_Client.b

at 
Client_Bolt.py 

Crop_Visual_Im

g.bat 

Server L 
Crop_Visual_

Server.bat 

Crop_Visual_Server.p

y 

5050 

-Transfers the 

cropped 

image 

coordinate 

text file

Client J 

Crop_Visual_

Transfer.sh 

Crop_Visual_

Client.ba t (L) 

Client_Crop_Visual.p

y 

 

6.11 Image Splitting at Microcomputer End 

 

The image C.jpg is used for running the AI models. The corrosion and crack AI models are 

based on the AlexNet architecture. The AlexNet model requires input images of size 

227x227 pixels. To achieve this, python scripts are used to split the original C.jpg image 

into multiple smaller sub-images, each of size 227x227 pixels, which are then used as input 

for the AI models. This approach allows the AI models to analyze different sections of the 

original image individually, making it suitable for classification .  

Below are the python files and the respective image path being the split images are placed.  

 

Table 15: Python Splitting Files 

AI Model File Name Sub Image Path 

Corrosion split_jetson_2.py 
/home/nddot/Run/Submission_n

ov_2/Dataset/test/ 

Crack split_jetson.py 
/home/nddot/Run/crack/datanew

c/test/ 

 

A brief overview of the two split scripts is given below:

1. The script introduces the infile variable to represent the path of the input image file C.jpg 
located at . 

2. The variable savedir is defined, pointing to the directory where the split sub-images will 
be stored. 



  
 

P a g e  | 71 

3. The start_pos variable is initialized with the starting position (top-left corner) for cropping 
the image. It is set to (0, 0). 

4. To define the size of the sub-images, the cropped_image_size variable is used, with a width 
and height of 227 pixels each. 

5. The script opens the image using the Image.open() method from the PIL library and assigns 
it to the variable img1.

6. The width and height of the original image are obtained using the size attribute of the img1 
object. 

7. A frame_num variable is initialized to keep track of the cropped sub-images, starting from 
0. 

8. Utilizing nested loops, the script iterates through the original image, cropping it into 
smaller sections measuring 227x227 pixels using the img1.crop() method. 

9. For each split sub-image, a filename is created based on the frame number and the original 
image filename without the extension. 

10. Each split sub-image is saved in the specified directory using the crop.save() method, with 
filenames like C001.png, C002.png, and so on, according to the frame number. 

11. After saving each sub-image, the frame number is incremented to ensure unique filenames 
for subsequent sub-images. 

6.12 Image Cropping at Microcomputer End 

 

In the smart interface, inspectors are provided with the tool to crop the captured images 

from the visual sensor. Image cropping allows the inspector to define a specific area of 

interest within the captured image. This area could contain the targeted area of defect that 

would require classification. 

The advantage of this cropping feature is two-fold: 

Faster Processing: Instead of analyzing the entire image, the system only needs to process 

the cropped area. This saves time and speeds up the inspection process.

Efficient Resource Use: When running AI models or performing analyses, the system 

allocates computing resources more effectively since it's working with a smaller, focused 

image area. 

Following the inspector's image cropping, the precise cropping coordinates, encompassing 

the top left and bottom right points, are transferred from the laptop to the microcomputer 

to initiate processing. These coordinates are stored in the 

/home/nddot/IMAGE_CAPTURES/VISUAL_CROP/1.tx" file.  

The breakdown of the crop script  Crop_Cor_to_img.py

is as follows: 

1. The script starts by importing necessary libraries: glob, os, re (for regular expressions), PIL 
(Python Imaging Library for image processing), shutil, and cv2 (OpenCV).

2. It defines the folder_path and file_type to locate JPEG image files in a specific directory. 
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3. The script uses glob.glob() and max() to find the most recently created JPEG image file in 
the specified folder. 

4. The found file is copied to another directory named 
. 

5. It locates the copied image in the VISUAL_CROP directory, then opens and reads a text 
file named 1.txt associated with the image.

6.  using a regular expression to extract 
numerical values that represents cropping coordinates.

7. It resizes the image to dimensions that are multiples of 227. 
8. It crops the image based on the specified coordinates (x, width, y, height). 
9. It saves the cropped image in the 

 directory. 
10. If no valid coordinates are found in the text file, or if there is an error reading the text file, 

appropriate messages are printed. 

6.13 AI Processes  Corrosion 

 

The image classification-based Alex Net model has been used for corrosion detection. A 

total of 9254 images have been used for training the model. It is a pretrained model in 

Pytorch framework in Python. All the images are annotated into two classes; with corrosion 

(WC) and without corrosion (WOC).  

The breakdown of the corrosion script  Corrosion.py

as follows: 

1. Image augmentation has been done by using transform. 
RandomsizedCrop/RandomRotation/RandomHorizontalFlip/CenterCrop 

2. Then the augmented image converted to torch tensor of values 0 and 1 by the 
function transforms.ToTensor(). 

3. 

 
4. os.path.join() has been used to concatenate the paths of main folder to connect the 

training and validation folders. 
5. The listdir() function provided by the os module has been used to get the number 

of classes. 
6. To Load data from folders ImageFolder() has been used. 
7. The label of the images has been obtained by using class_to_idx.items().
8. Dataloader module has been used to iterate the loaded data. 
9. The final layer of Alex Net has been modified to work as a binary classifier.

 

6.14 AI Processes  Crack 
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Similar to corrosion, the image classification-based Alex Net model has been used for 

crack detection. About 200 images with 1500 sub images have been used for training the 

model. It is a pretrained model in Pytorch framework in Python. All the images are 

annotated into two classes; with crack (WCrack) and without crack (Without Crack).  In 

the following, all steps were summarized.  

 Image augmentation and superimposed images has been done by transferring 
images colors and crack, as well as crack direction. 

 Data was divided into two main datasets (train and validation) with two subfolders.  
 We generated a balanced data set (791 crack images and 791 uncrack images) for 

crack with lab data since there is no available data set for crack.  
 We also added about 300 new images based on recent crack images and our 

inspection. This folder (caltec256subset) now contains:  
-  845 crack images (folder (a)) 
-  845 uncrack images (folder (b))  
 os.path.join() has been used to concatenate the paths of main folder to connect the 

training and validation folders. 
 The listdir() function provided by the os module has been used to get the number 

of classes. 
 To Load data from folders Image Folder () has been used. 
 The label of the images has been obtained by using class_to_idx.items().
 Data loader module has been used to iterate the loaded data. 
 The final layer of Alex Net has been modified to work as a binary classifier.
 Test algorithm in real time: this part contains a script file in Python which usually 

works to call images in test folder and order it based on subimages names, as well 
as calling trained model to predict class labels of each sub images. This part was 
designed in such a way that the inspectors can call model and sub images in real 
time and summarize all results with classes in excel file.  

 This excel was used as an input file to get main information to inspectors about the 
location of crack.  

 Finally, the test sub images were used the performance algorithms. To do this, the 
train model was used to predict the class of each sub image.  

 
in real time. 

 In total, the crack folder contains all images related to the train dataset, trained 
model, and all sub images 
related to the test dataset.  
 

6.15 AI Processes  Bolt Issue  

 

Just to reduce system complexity in real time as well as make sure that all code is 

compatible with Jetson, the same liberty (Py torch) was used again for bolt detection. Based 
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on the problem, bolt considered as small object and using object detection algorithm is one 

of the best options based on previous studies.   

 The following model builders can be used to instantiate a Faster R-CNN model, 
with pre-trained weights.  

 All the model builders internally rely on the torchvision.models.detection.faster _ 
rcnn.FasterRCNN _ Resnet base class.  

 All images were annotated based on bounding box location.  
 The folder contains three excel files for all annotated boxes for training and testing, 

and all images.  
 After training, the model was saved in the same folder.  
 In test mode, the inspectors call train models with test images just to predict the 

defected bolt location.  
 After prediction, the carinated related to defected bolt was saved in text file.  
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Appendix A Payload Interface Design 

 

1.Materials and Manufacturing 

1.1 Stratasys F370 Composite 3D Printer 
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1.2 ABS M30 Black/Ivory Material Properties 
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2 Component Design 

2.1 Battery and Jetson Housing 

 
Top-Down View 

 
Front View 
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Side View 
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2.2 Battery and Jetson Housing Brackets 

Front Upper Bracket 

 
Top-Down View 

 
Side View 
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Rear Upper Bracket 

 
Top-Down View 

 
Back View 
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Lower Bracket 

 
Top-Down View 

Front View 
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2.3 Gimbal Housing 

 
Side Half-Section View 

 
Front Half-Section View 
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Top-Down View 
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2.4 Gimbal Housing Brackets 

Rear Gimbal Bracket 

 
Top-Down View 

 
Back View 
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Front Gimbal Brackets (same model, just mirrored) 

 
Top-Down View 

 
Side View (Smaller Side) 
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2.5 Camera Housing 

 
Top-Down View 
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Bottom View 
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Rear/Interior View 
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2.6 Camera Housing Clip-on Cover 

 
Exterior-Facing Side View 

Bottom View 
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Side View 
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