

October 2013
North Dakota
Local Road Safety Program

# North Dakota Local Road Safety Program 

Prepared by
CH2M HILL
SRF Consulting Group, Inc.

On behalf of
North Dakota Department of Transportation
Grant Levi, P.E., Director

November 2013


## Contents

1.0 Introduction ..... 1-1
1.1 Background ..... 1-1
1.2 Traffic Safety - A National Perspective ..... 1-2
1.2.1 AASHTO's Strategic Highway Safety Plan and Safety Emphasis Areas ..... 1-3
1.3 North Dakota's Statewide Safety Planning Efforts ..... 1-3
1.4 Local Road Safety Program Overview. ..... 1-5
2.0 Ward County Safety Emphasis Areas and Crash Overview ..... 2-1
2.1 Ward County Crash Overview ..... 2-1
2.1.1 North Dakota Crash Mapping ..... 2-1
2.1.2 Facilities Analyzed. ..... 2-1
2.1.3 Crash Data Sets ..... 2-2
2.2 Ward County Safety Emphasis Areas ..... 2-7
2.3 Ward County Crash Risk Factors ..... 2-8
2.3.1 Rural Segments - Crashes on Paved Roads ..... 2-8
2.3.2 Rural Curves - Crashes on Paved Roads in Curves ..... 2-13
2.3.3 Rural Intersections - Crashes at Thru-STOP Intersections ..... 2-16
2.3.4 Urban Roadway Segments - Cities with Populations Greater than 5,000 (Minot) ..... 2-19
2.3.5 Urban Intersections - Right-Angle Crashes, Cities with Populations Greater than 5,000 (Minot) ..... 2-22
2.3.6 Urban Intersections - Pedestrian/ Bicycle Crashes, Cities with Populations Greater than 5,000 (Minot) ..... 2-24
2.4 Ward County Risk Summary ..... 2-25
3.0 Ward County Priority Safety Strategies ..... 3-1
3.1 Background. ..... 3-1
3.2 Initial/Comprehensive List of Potential Strategies. ..... 3-1
3.3 Safety Strategies Workshop ..... 3-13
3.4 Priority Safety Strategies ..... 3-13
4.0 Ward County Infrastructure Safety Projects ..... 4-1
4.1 Ward County Proactive Project Decision Process ..... 4-1
City of Minot. ..... 4-9
5.0 Behavioral Safety Strategies ..... 5-1
5.1 Purpose of Driver Behavior Safety Strategies ..... 5-1
5.2 Overview of Behavioral Crash Data for Ward County ..... 5-1
5.3 Importance of Traffic Safety Culture Change ..... 5-2
5.3.1 The Influence of Traffic Safety Culture. ..... 5-2
5.3.2 Social Norms Inhibiting a Strong Traffic Safety Culture ..... 5-2
5.3.3 Social Levels Influencing Safety Culture ..... 5-2
5.4 Behavioral Safety Strategies ..... 5-3
5.4.1 Role of Policy, Education and Enforcement ..... 5-3
5.4.2 Effective Use of Public Information Strategies ..... 5-4
5.4.3 LRSP Phase I Priority Strategies ..... 5-5
5.4.4 Impaired Driving ..... 5-6
5.4.5 Young Drivers ..... 5-8
5.4.6 Unbelted ..... 5-10
5.4.7 Speed and Aggressive Driving ..... 5-12
5.5 Traffic Safety Office Supporting Resources ..... 5-15
5.5.1 TSO Grant Program Application Process. ..... 5-15
5.5.2 Technical Assistance (TSO staff, LEL, TS coordinators, contractors, County Association TS resource, etc,). ..... 5-15
5.5.3 Traffic Records/Crash Data ..... 5-16

## Acronyms and Abbreviations

4Es education, enforcement, engineering, and emergency medical services
AASHTO
American Association of State Highway and Transportation Officials
ADT
CMC
CMF
CRS
DUI
EMS emergency medical services
ERA edge risk assessment
FHWA Federal Highway Administration
GDL graduated drivers license
GHSA Governors Highway Safety Association
HSIP Highway Safety Improvement Program
LEAD Listen, Educate, Ask, Discuss
LRSP Local Road Safety Program
MUTCD Manual on Uniform Traffic Control Devices
NCHRP National Cooperative Highway Research Program
NDDOT North Dakota Department of Transportation
NHTSA National Highway Traffic Safety Administration
Plan LRSP Safety Plan
PSA public service announcement
SHSP Strategic Highway Safety Plan
TSO Traffic Safety Office

## Executive Summary

This Local Road Safety Program (LRSP) was prepared for Ward County and the City of Minot. The LRSP was prepared as part of North Dakota's statewide highway safety planning process. The contents are the result of a data-driven process, with a goal to reduce severe crashes (defined as those crashes resulting in at least one fatality or incapacitating injury) by documenting at-risk locations, identifying effective low-cost safety improvement strategies, and better positioning the county and city to compete for available safety funds. The LRSP includes a description of the connection to safety planning efforts at the national, state (through North Dakota's Strategic Highway Safety Plan and the Highway Safety Improvement Program), and regional levels.
This LRSP was commissioned by the North Dakota Department of Transportation (NDDOT) to provide a tool to assist counties in submitting proactive low-cost systematic safety projects for NDDOT to fund as part of the Highway Safety Improvement Program (HSIP). The LRSP is not intended to be a complete safety plan for the Ward County and the City of Minot, because there may be other safety improvement strategies that are considered high-cost or low-cost that are also effective, but cannot be systematically applied across a county or local road system. While this LRSP addresses many of the safety concerns for at-risk locations within the county, other high-priority projects may be identified after this safety planning effort is complete.
Specifically, this LRSP includes the following:

- Description of the safety emphasis areas.
- Identification of a short list of high-priority, low-cost Safety Strategies.
- Documentation of at-risk locations along the county/local road systems that are considered candidates for safety investment. At-risk locations include roadway segments, horizontal curves, and intersections with multiple severe crashes or with roadway geometry and traffic characteristics similar to other locations in North Dakota where severe crashes have occurred.
- Development of almost $\$ 3$ million of suggested safety projects across the County, including the completed forms suitable for submittal to NDDOT for their consideration for HSIP funding. These projects represent the application of high-priority safety strategies at the at-risk locations.
- Discussion of behavioral crash statistics, potential safety strategies, and current statewide resources available for implementation of behavioral safety strategies.

TABLE E-1
Ward County and City of Minot Total Project Costs

| Rural Projects | Intersections | Segments | Curves | Total |
| :---: | :---: | :---: | :---: | :---: |
| Ward County | $\$ 2,122,800$ | $\$ 366,070$ | $\$ 109,276$ | $\$ 2,598,146$ |
| Urban Projects | Segments | Right Angle <br> Intersections | Pedestrian and <br> Bicyclist <br> Intersections | Total |
| Minot | $\$ 92,140$ | $\$ 114,000$ | $\$ 190,000$ | $\$ 396,140$ |

The information in this LRSP is consistent with best practices in safety planning as presented in guidance prepared by the Federal Highway Administration (FHWA), the American Association of State Highway and Transportation Officials (AASHTO), and the National Cooperative Highway Research Program (NCHRP). This information is provided in an effort to reduce the number of severe crashes on the county/local road systems. It is understood that the final decision to implement any of the suggested projects resides with the respective county or city officials.

It should also be noted that the rankings of county/local roadway facilities are based on a comparison with documented risk factors. There is no expectation or requirement that the Ward County or the City of Minot pursue safety projects in the exact ranking order. The ranking suggests a general priority, and it is understood that actual project development decisions will be made by county or city staff based on consideration of economic, social, and political issues, as well as in coordination with other projects already in each agency's Capital Improvement Program.

It should also be noted that some of the at-risk locations and suggested safety projects involve the intersection of a county roadway and a state route. It is acknowledged that the county does not have the authority to implement projects on the state's right-of-way. The county is encouraged to coordinate with the NDDOT to pursue a partnership that identifies a path toward implementation. This LRSP (1) does not set requirements or mandates; (2) is not a standard; and (3) is neither intended to be nor does it establish a legal standard of care.
To help reduce the potential exposure to claims of negligence associated with motor vehicle crashes on the county/local road system, the following key point should be considered:

- Federal law (23 USC Section 409) established that information generated as part of the statewide safety planning process is considered privileged and unavailable to the public. The privileged status includes crash data where value/detail has been added by analysts during the safety planning process (for example, computation of crash rates, disaggregation of crashes by type or severity, and documentation of contributing factors), the lists of at-risk locations, and information supporting the development and evaluation of potential safety projects. The federal law and the privileged status of the safety information was upheld by the U.S. Supreme Court in the case of Pierce County (Washington) v. Guillen (see Appendix I). North Dakota interprets Section 409 to mean that basic crash data is available
to the public on request, but that it cannot be used in legal proceedings associated with claims of negligence.
Regarding the expected life of this LRSP, the shelf life of this document is limited (as with any transportation plan). This is because the distribution of crashes can change over time, just as roadway and traffic conditions change, contributing to the occurrence of crashes. As a result, Ward County and the City of Minot are encouraged to consider periodically updating this LRSP.

The county and the City of Minot are encouraged to apply for these projects through the NDDOT's HSIP process. The anticipated annual HSIP process is shown in Table ES-2.

TABLE ES-2
HSIP Solicitation Schedule

| Month | Task Description |
| :--- | :--- |
| October/November | Solicitation for HSIP is sent out to all counties, districts, MPOs, cities, and tribes. The <br> counties, districts, MPOs, cities, and tribes will have about 6 weeks to respond. |
| January through <br> March | NDDOT reviews the requests and conducts additional studies if required. |
| Following Fall | HSIP approval notices are sent after program concurrence from FHWA. Funding for an <br> approved project will be provided as funding is available. |

### 1.0 Introduction

### 1.1 Background

To fulfill a commitment in the 2013 North Dakota Strategic Highway Safety Plan (SHSP), the North Dakota Department of Transportation (NDDOT) began the Local Road Safety Program (LRSP). The purpose of the LRSP is to better engage local roadway agencies in the statewide safety planning process. The NDDOT's commitment is based on two pieces of information:

- Based on 2007-to-2011 crash records, the SHSP identified that 56 percent of severe crashes in North Dakota occurred on roads operated by local agencies.
- The NDDOT had historically focused federal safety funds on interstates, U.S. highways, and state highways, even though approximately half of severe crashes occurred on those facilities.

The NDDOT set out to increase the level of participation of local agencies in safety planning and the amount of safety funds directed toward projects on local systems. To do this, the NDDOT first partnered with local agencies (including all 53 counties and 12 major cities in the state) to prepare safety plans for every region of North Dakota.

Representatives from the NDDOT, Ward County, and the City of Minot prepared this LRSP Safety Plan (Plan) as Phase 1 of a comprehensive effort to reduce the number of fatal and incapacitating injury crashes (referred collectively as severe crashes) that

The Strategic Highway Safety Plan (SHSP) development process was key in helping us identify the importance of local roads to achieve our longterm safety goals. This data-driven process helped us to transition to a systemic identification of crash types on all roads in addition to our traditional crash location (or hot spot) approach on the state system. As a result, the NDDOT has partnered with local stakeholder to prepare road safety plans that will identify potential safety projects consistent with the SHSP.

- Grant Levi, P.E., Director North Dakota Department of Transportation occur on North Dakota's local road system in Ward County. The area covered by the Plan includes a portion of NDDOT District 4 - Minot (Figure 1-1). Additionally, Burleigh, Cavalier, Nelson, Pembina, Ramsey, and Walsh counties and the cities of Bismarck and Devils Lake participated in Phase 1 of the study, but are presented in a separate report.
The purpose of this LRSP is to identify and implement specific safety strategies at specific locations and to link these projects directly with the contributing factors associated with the majority of severe crashes on the local roads. These safety projects are intended to be comprehensive by addressing both infrastructure- and driver-behavior-related crashes by including proactive projects developed through a system-wide risk assessment process. These projects are intended to complement reactive projects developed through a site analysis approach focused on high-crash locations.

The traffic safety priorities identified in this Plan are the result of a data-driven analysis of nearly 88,450 crashes (including 2,231 severe crashes) on all roads in North Dakota. Of these crashes, 9,170 total crashes and 209 severe crashes occurred in Ward County over the 5-year period from 2008 to 2012.


FIGURE 1-1
North Dakota Department of Transportation's Eight Districts

### 1.2 Traffic Safety - A National Perspective

According to the National Highway Traffic Safety Administration (NHTSA), 32,310 people were killed in traffic crashes in 2011 - an average of 89 people killed every day - and an additional 2.2 million people were injured. The number of fatalities nationally decreased significantly and steadily in the 1970s and 1980s. This trend was interrupted beginning in the early 1990s and continuing through the early 2000s as traffic fatalities began to increase. However, since 2005, traffic fatalities have decreased dramatically to the lowest number of fatalities in recent history - 32,310 fatalities in 2011.

Like the national trend, the North Dakota traffic fatality rate also decreased in the 1970s and 1980s. Likewise, North Dakota's traffic fatalities slowly increased through the 1990s and began to decrease in 2005. However, unlike the national trend, North Dakota's traffic fatality rate has increased since 2008. The 2013 North Dakota Strategic Highway Safety Plan recognizes the following issues likely account for much of the increase:

- Shifts in the age of the driving population.
- Steady increase in the number of vehicle miles traveled in North Dakota, which is counter to the flat or decreasing national trend in travel.
- Other states have a longer history using a systemic investment approach to focus on locations with risk factors for severe crashes.
- The growing challenges of providing emergency medical response and quick access to advanced health care in rural areas.


### 1.2.1 AASHTO's Strategic Highway Safety Plan and Safety Emphasis Areas

In the late 1990s, the American Association of State Highway and Transportation Officials (AASHTO) and the Federal Highway Administration (FHWA) supported a comprehensive and data-driven approach to reduce the number of traffic-related fatalities. Both AASHTO and FHWA concluded that up to that point, states' efforts had not been effective in lowering the number of severe crashes because: (1) efforts were not focused on severe crashes nor the primary factors resulting in severe crashes, and (2) safety project selection was not part of a data-driven process that implemented effective strategies at locations most at risk for a severe crash.

AASHTO and FHWA recommended a safety program development process that included 22 categories (or safety emphasis areas) in the areas of drivers, special users, vehicles, highways, emergency services, and management. The objective of this first step is to help agencies consider the 4Es - education, enforcement, engineering, and emergency medical services (EMS) - when identifying safety priorities for their roads. In addition, selecting safety emphasis areas focuses agencies on safety strategies linked to the problem.

In 2007, AASHTO set a goal to reduce the number of traffic fatalities by 1,000 each year for the next 20 years, which is an integral first step in a national Toward Zero Death safety vision. FHWA has determined that this goal will be reached only by partnering with individual states. This partnering will lead to more successful project implementation and will result in programs that target the factors contributing to the greatest number of fatal and severe crashes.

### 1.3 North Dakota's Statewide Safety Planning Efforts

As shown in Figure 1-2, through 2004, North Dakota had a fatality rate (1.34 fatalities per hundred million vehicle miles traveled [HMVMT] in 2004) that was less than the national average ( 1.44 fatalities per HMVMT). However, in recent years, the North Dakota fatality rate ( 1.61 fatalities per HMVMT in 2011) has risen to above the national average ( 1.10 fatalities per HMVMT) and the overall number of traffic fatalities has crept upward (see Figure 1-2). In 2011, there were 148 fatalities on North Dakota roads, which is the most traffic fatalities reported in the state since 1982.


FIGURE 1-2
Fatality Rate - National and North Dakota (2000 to 2012)

In 2013, the NDDOT updated the state's SHSP. Based on severe crashes (Table 1-1), the 2013 SHSP identified the following emphasis areas, as well as priority strategies in each area:

- Young drivers (under age 21)
- Excessive speed or aggressive driving
- Alcohol-related
- Unbelted vehicle occupants
- Lane departure
- Intersections

North Dakota also adopted a long-term vision of zero fatalities on its roadways. Achieving this vision will require many years and dramatic shifts in the safety culture for North Dakota residents. An aggressive intermediate goal was set to reduce the 3-year average of traffic fatalities to 100 or fewer by 2020.

TABLE 1-1
North Dakota Fatal and Incapacitating Injury Crashes by AASHTO Safety Emphasis Area

|  |  |  | vide ads) |
| :---: | :---: | :---: | :---: |
|  | Safety Emphasis Area | Percent | Number |
|  | Involving Driver under Age 21 | 22\% | 501 |
|  | Involving drivers over the age of 64 | 13\% | 280 |
| Driver | Excessive Speed or Aggressive Driving | 26\% | 576 |
| Drivers | Alcohol-Related | 30\% | 667 |
|  | Distracted, asleep, or fatigued drivers | 9\% | 206 |
|  | Unbelted Vehicle Occupants | 48\% | 1,067 |
| pecia | Pedestrians crashes | 5\% | 117 |
| Special User | Bicycle crashes | 2\% | 46 |

TABLE 1-1
North Dakota Fatal and Incapacitating Injury Crashes by AASHTO Safety Emphasis Area

| Safety Emphasis Area |  | Statewide (All Roads) |  |
| :---: | :---: | :---: | :---: |
|  |  | Percent | Number |
| Vehicles | Motorcycles crashes | 12\% | 265 |
|  | Heavy vehicle crashes | 15\% | 342 |
| Highways | Train-vehicle collisions | 1\% | 13 |
|  | Lane-Departure Including both lane-departure ( 898 severe crashes) and head-on/ sideswipe-opposing crashes ( 150 severe crashes) | 47\% | 1,048 |
|  | Intersections | 23\% | 513 |
|  | Work zone crashes | 2\% | 36 |
| Total Severe (Fatal and Incapacitating Injury) Crashes |  | 2,231 |  |

Notes:
Information is from North Dakota crash data records, 2008 to 2012; which is an update to the information in the 2013 ND SHSP, which used 2007 to 2011 crash records.
Numbers in this table do not add up to the statewide crash numbers because one crash may be categorized into multiple emphasis areas. For example, one crash may involve a young driver at an intersection and, therefore, be included in both of these emphasis areas.

### 1.4 Local Road Safety Program Overview

North Dakota's local road system encompasses more than 97,500 miles of roadway out of approximately 106,000 miles statewide. Although, historically, more than 50 percent of severe crashes in North Dakota occur on local roads, the density of these crashes was very low (approximately 0.002 severe crash per mile per year). As a result, local agencies were unable to identify high-crash locations to nominate for funding through the Highway Safety Improvement Program (HSIP). Therefore, using stand-in data for the severe crashes, safety projects were identified using a systemic process to evaluate at-risk locations. The use of the systemic process was necessary due to the low crash density. Based on revised FHWA policy, the NDDOT expanded the HSIP to include projects identified through the systemic analysis of local roads.

The focus areas of the systemic risk assessment are rural, paved county and tribal highways ${ }^{1}$ and urban arterials and collectors in North Dakota's larger cities (cities with a population greater than 5,000). Paved, rural county highways were selected based on an analysis of statewide crash data that indicated that approximately 61 percent of severe local road crashes occurred on rural county roads. Of these crashes, approximately half occurred on paved roads, which accounted for less than 10 percent of county roads (approximately 6,200 miles). Further analysis indicated that on these rural highways, the most at-risk elements included roadway segments ( 60 percent of severe crashes), horizontal curves ( 32 percent of severe crashes), and intersections ( 32 percent of severe crashes).

[^0]Major cities were selected as a focus because the 12 cities in this category account for approximately 90 percent of the severe local road crashes within city boundaries. Furthermore, arterials and collectors accounted for 40 percent of the severe crashes. In addition, because these 12 cities are responsible for operation and maintenance of U.S. highway and state highway routes within the municipal limits (not including fully access managed facilities, such as the interstate), the U.S. and state highways were included in the review.

Figure 1-3 shows the approach used to develop this Plan for Ward County. Beginning with the crash analysis and concluding with this LRSP Plan report, the process is a culmination of NDDOT and concerned local agencies working together for nearly half a year.


FIGURE 1-3
Local Road Safety Program Safety Plan Approach

### 2.0 Safety Emphasis Areas and Crash Overview

The first step in the process to prepare Safety Plans for Ward County was to conduct a crash analysis overview statewide for North Dakota and then for the county as a whole.

### 2.1 Ward County Crash Overview

### 2.1.1 North Dakota Crash Mapping

Crash data was taken from NDDOT's Crash Reporting System (CRS) and placed into ArcGIS for data exportation based on specific locations relative to local roads. The most recent five-year period of crash data (from 2008 to 2012) was analyzed and used to determine risk factors specific to the county's local roads. Consistent with NDDOT's SHSP, the analysis focused on severe (fatal and incapacitating injury) crashes.

### 2.1.2 Facilities Analyzed

The crash analysis was broken into three main facility types: road segments, curves, and intersections.

- Paved rural local road segments were analyzed and local county major collector (CMC) gravel roads were analyzed for multiple crash locations. Other local gravel roads were removed from the analysis because of the relatively low percentage of severe crashes and due to the lack of infrastructure-based strategies that can be applied to this roadway type.
- Local rural road intersections with state highways or other local roads were included in the analysis. Local non-CMC gravel roads intersecting with other local roads were removed from the analysis due to the very low number of crashes at these intersections.
- Horizontal curves on paved rural local roads were included in analysis.
- Urban segments and intersections were analyzed in the City of Minot. Urban roadway types analyzed within the city limits included:
- State routes
- Urban principal arterials
- Urban minor arterials
- Urban collector roads
- All other local road segments and intersections, including gravel roads, were reviewed for locations with multiple severe crashes or "hot spots."


### 2.1.3 Crash Data Sets

Crash data for the five years from 2008 to 2012 was used for countywide crash analysis. In safety analysis, it is recommended that more than one year of data be studied to reduce the possibility of examining an unusual year. It is also important to include as many years as necessary to produce a data set that will provide statistically reliable results but not too long so that changed conditions are a concern (for example, reconstructed roads, addition of STOP signs and changed speed limits). Ward County did not have enough crashes to be statistically reliable; therefore, decisions were based on the crashes for all Phase I counties combined (Figure 2-1), statewide data (Figure 2-2), or national research.
The Ward County data set includes 6,194 crashes on local roads; of these, 123 were fatal or serious injury crashes. Disaggregating the severe crashes by road type (paved, gravel, or local), area (urban versus rural) and then by crash type category (intersection versus segment crashes) results in the distribution shown in Table 2-1, Figure 2-1, and Figure 2-2.

TABLE 2-1
Crash Distribution (2008 to 2012)

| Location | Ward (Percent/Number) | Statewide (Percent/Number) |
| :---: | :---: | :---: |
| Rural Roads | $\begin{gathered} 40 \% \\ \text { (49 crashes) } \end{gathered}$ | $\begin{gathered} 61 \% \\ \text { (740 crashes) } \end{gathered}$ |
| Paved Rural Roads | $\begin{gathered} 59 \% \\ \text { (29 crashes) } \end{gathered}$ | $52 \%$ <br> (387 crashes) |
| Local Gravel CMC Roads | $\begin{gathered} 8 \% \\ (4 \text { crashes) } \end{gathered}$ | 9\% <br> (68 crashes) |
| Paved Rural Road Segments | 45\% <br> (13 crashes) | $60 \%$ <br> (226 crashes) |
| Single Vehicle, Lane departure Crashes on Paved Rural Road Segments | $\begin{gathered} 77 \% \\ (10 \text { crashes) } \end{gathered}$ | $76 \%$ <br> (171 crashes) |
| Paved Rural Road Intersections | $\begin{gathered} 38 \% \\ \text { (11 crashes) } \end{gathered}$ | $\begin{gathered} 32 \% \\ \text { (120 crashes) } \end{gathered}$ |

This review shows that, on the local system, severe lane departure crashes on paved roads and angle crashes at Thru-STOP intersections are overrepresented. Based on statewide traffic safety data, severe lane departure crashes along curves are also overrepresented.


FIGURE 2-1
Ward County Crash Data Overview - Rural and Urban Local Road Systems (2008 to 2012)


FIGURE 2-1 (Continued)
Ward County Crash Data Overview - Rural and Urban Local Road Systems (2008 to 2012)

## North Dakota Crash Tree: Rural Local System



FIGURE 2-2
North Dakota Crash Data Overview - Rural and Urban Local Road Systems (2008 to 2012)

## North Dakota Tree: Urban Local System

Source: North Dakota Crash Data, 2008-2012
-- Severe $=$ Fatal + Incapacitating injury crashes.

### 2.2 Ward County Safety Emphasis Areas

The total number of severe crashes (those crashes resulting in a fatality or incapacitating injury) in each county over the five-year period from 2008 to 2012 was so few that the crash data is analyzed at regional, statewide, and national levels for various risk factors.

Section 1.2 described the development of AASHTO's emphasis areas, and how this process was applied to the State of North Dakota to identify statewide safety emphasis areas (Table 1-1). An identical process was followed for Ward County, resulting in the distribution of severe crashes among AASHTO's 22 emphasis areas (Table 2-2). The emphasis areas for the county are consistent with the state's emphasis areas. This process revealed where crashes were overrepresented based on a comparison to statewide averages or where a large enough number of crashes represented an opportunity to substantially reduce crashes. As a result, the following safety emphasis areas were identified as priorities for safety investments:

- Driver Behavior - Young drivers, aggressive drivers, alcohol-related, and unbelted vehicle occupants
- Highways - Lane departure and intersection crashes

TABLE 2-2
Ward County Severe Crashes by Safety Emphasis Areas (2008 to 2012)

| Safety Emphasis Areas | Statewide (\% of Total) | 2008 to 2012 Severe Crashes |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ward County |  | State Roads |  | Local System |  |
|  |  | \% | \# | \% | \# | \% | \# |
| Total Severe Crashes | 2,231 | 209 |  | 51 |  | 74 |  |
| Involving Drivers Under Age 21 | 22\% | 30\% | 63 | 27\% | 23 | 33\% | 40 |
| Involving Drivers Over Age 64 | 13\% | 16\% | 33 | 16\% | 14 | 15\% | 19 |
| Excessive Speed or Aggressive Driving | 26\% | 25\% | 52 | 20\% | 17 | 28\% | 35 |
| Alcohol-Related | 30\% | 22\% | 47 | 22\% | 19 | 23\% | 28 |
| Distracted, Asleep, or Fatigued Drivers | 9\% | 4\% | 9 | 7\% | 6 | 2\% | 3 |
| Unbelted Vehicle Occupants | 48\% | 39\% | 82 | 35\% | 30 | 42\% | 52 |
| Pedestrian Crashes | 5\% | 7\% | 15 | 8\% | 7 | 7\% | 8 |
| Bicycle Crashes | 2\% | 2\% | 5 | 1\% | 1 | 3\% | 4 |
| Motorcycle Crashes | 12\% | 15\% | 31 | 9\% | 8 | 19\% | 23 |
| Heavy Vehicle Crashes | 15\% | 10\% | 20 | 13\% | 11 | 7\% | 9 |
| Train-Vehicle Collisions | 1\% | 2\% | 5 | 0\% | 0 | 4\% | 5 |
| Lane departure (Run-Off-the-Road and Head-On) Crashes | 47\% | 30\% | 62 | 33\% | 28 | 28\% | 34 |
| Head-On | 7\% | 4\% | 8 | 6\% | 5 | 2\% | 3 |
| Run-off-the-Road Crashes | 40\% | 26\% | 54 | 27\% | 23 | 25\% | 31 |
| Intersection Crashes | 23\% | 28\% | 58 | 20\% | 17 | 33\% | 41 |
| Work Zone Crashes | 2\% | 1\% | 2 | 2\% | 2 | 0\% | 0 |
| Deer Collisions | 1\% | 0\% | 1 | 1\% | 1 | 0\% | 0 |
| Adverse (Winter) Weather Related | 17\% | 16\% | 33 | 20\% | 17 | 13\% | 16 |
| Note: <br> Severe crashes are those crashes that result in at | ne fatality | incap |  | njury. |  |  |  |

Strategies to reduce crashes depend on whether a safety emphasis area is infrastructure-based or driver-behavior-based. Infrastructure-based emphasis areas refer to characteristics of the location (for example, roadway segment, curve, intersection) where crashes occurred. Driver-behavior-based emphasis areas refer to motorist characteristics or actions that contribute to crashes. Because driver behavior is tied to laws made at the national and state levels, roadway agencies generally have less ability to address driver-behavior-based emphasis areas. The most effective approach for road authorities to addressing driver-behavior-based emphasis areas is to focus on public education and law enforcement through cooperation and collaboration with other county departments, agencies, and schools. Generally, more opportunities exist for county and city road authorities to address infrastructure-based emphasis areas, because many of the associated strategies can be implemented as separate roadway improvement projects, or along with other planned improvements. Specific infrastructure- and driver-behavior-based strategies presented to the participants of the safety workshop held for Ward County are provided in Section 3.2.

### 2.3 Ward County Crash Risk Factors

The objective of the analytical process is to identify candidates for safety investment based on two criteria: high-crash locations and at-risk locations. A more detailed crash analysis was performed for each priority crash type to identify (1) locations where these priority crash types occur at a rate of one or more severe crashes per year, and (2) basic roadway and traffic characteristics of locations with severe crashes. These characteristics are not considered to be the cause of crashes, but instead are used to determine the risk that a future severe crash would occur at a particular location. Information from historic crashes was used to evaluate the remainder of the county's local road system and prioritize locations for safety investment based on similar characteristics.

Three urban areas were studied as a part of Phase I in the LRSP in addition to the nine region counties: Bismarck, Minot, and Devils Lake. Minot is the subject of the urban portion of this Plan, but for analysis purposes, the data were combined for all of Phase I urban areas.

### 2.3.1 Rural Segments - Crashes on Paved Roads

Of the more than 97,500 miles of local road system in North Dakota, only 7 percent of the roads are paved. However, 52 percent of crashes occured on paved roads. Therefore, the focus of the LRSP is on rural paved road segments.
There are 270 miles of rural paved roads in Ward County. From 2008 to 2012, 4 severe crashes were reported on these roads. The predominant crash type on these roads was lane departure (involving a single vehicle, Figure 2-3). The following five risk factors were identified for rural lane departure crashes on paved roads in the county:

1. Average Daily Traffic (ADT) - Of the rural paved roads, 58 percent have an ADT between 150 and 500 vehicles per day. However, 77 percent of the severe lane departure crashes occurred within this ADT range (Figure 2-4). Therefore, any segment with an ADT between 150 and 500 vehicles per day received a star ${ }^{1}$.

[^1]2. Access Density - Nationally, research has shown that an access density of eight or more access points per mile (including field entrances, commercial entrances, roadway access, etc.) increased the likelihood of a severe crash occurring. Minnesota's review of severe crashes on their rural county roads, shown in Exhibit 2-3, confirms this relationship with the severe crash density rising as the access density rises. Any segment with an access density greater than or equal to eight access points per mile received a star.


FIGURE 2-3
Severe Crashes by Access Density on Minnesota Rural County Roads (Source: Minnesota Department of Transportation County Road Safety Plans, Crash Data from 2005-2010)
3. Lane departure Density - The average lane departure density for the county was 0.03 crash per mile per year. Due to limited number of crashes in each county, any roadway segment where the lane departure density was greater than the average for the county received a star.
4. Critical Radius Curve Density - Nationally, lane departure crashes frequently occur within curves. Curves with radii between 500 and 1,200 feet [i.e., critical radius curves] have a higher severe crash rate than other curve radii and segments with a more curves in this range are considered to have greater risk. The risk factor is determined by the number of critical radius curves divided by the length of the segment. The county's average critical curve radius density for these types of curves along roadway segments was 0.035 curve per mile. Any segment with a curve critical radius density greater than or equal to 0.035 received a star.
5. Edge Risk Assessment (ERA) - A rating system was developed to categorize the risk level of vehicles leaving the travel lane. Roads with a usable shoulder and reasonable clear zone
received a rating of 1 . Roads with little or no usable shoulder but with a reasonable clear zone received a rating of 2 , as did roads with a usable shoulder but with fixed objects in the clear zone. Roads with no usable shoulder and fixed objects in the clear zone received a rating of 3. Examples of these edge risks are shown in Figure 2-6. Roads were evaluated via photos taken in the summer of 2013 to determine the rating. Roads with a rating of 2 or 3 received a star.

Detailed segment analysis and results for the county is provided in Chapter 4. A prioritization process for each roadway segment was put into place using the five risk factors by giving stars to each risk factor present. The highest-priority roadway segments received the most stars. In cases where roadway segments received the same number of stars, the ERA and ADT were used to break the tie.


FIGURE 2-4
Ward County Severe Crash Types on Rural Paved Roads (2008 to 2012)


FIGURE 2-5
Ward County and Northeast Region Counties Rural Roadway Segment Average Daily Traffic (ADT) Crash Data (2008 to 2012)


2 - No Usable Shoulder, Reasonable Clear Zone


2 - Usable Shoulder, Roadside with Fixed Obstacles


1 - Usable Shoulder, Reasonable Clear Zone

3 - No Usable Shoulder, Roadside with Fixed Obstacles

## FIGURE 2-6

Sample Edge Risk Assessment Ratings and Descriptions

### 2.3.2 Rural Curves - Crashes on Paved Roads in Curves

Detailed crash analysis included horizontal curves on rural paved local roads. Research indicates horizontal curves with certain characteristics contribute to the overall frequency of lane departure crashes. The 270 miles of rural paved roads in the county contain 110 curves totaling almost 29 miles in length ( 11 percent of the road system mileage).

With only three severe crashes along curves reported from 2008 to 2012, too few crashes occurred on these curves to serve as a reliable indicator of the relative degree of risk. However, statewide data show the importance of safety improvements on curves to reduce severe crashes since 32 percent of severe lane departure crashes occur along curves. As a result, the LRSP team used characteristics of curves in the county where crashes had previously occurred as well as available information from similar analysis across the nation and statewide data. Results from Cost-Benefit Analysis of In-Vehicle Technologies and Infrastructure Changes to Avoid Crashes Along Curves and Shoulders (compiled by the University of Minnesota and CH2M HILL in June 2009) were also used in curve analysis and prioritization.

Based on a review of these sources, the following five risk factors were identified for crashes within curves in the county:

1. Curve Radius - Ward County and all counties in Phase I did not have enough severe curve crashes to provide insight into North Dakota's characteristics (Figure 2-7). National data shows that curves with mid-range radii had higher crash densities. An upper limit of 1,200 feet was used for at-risk curves, because 1,200 feet is a 60 -mile-per-hour design speed based on AASHTO's A Policy on Geometric Design of Highways and Streets (commonly referred to as the "Green Book;" 6th edition, 2011). A lower limit of 500 feet was used to represent the severe lane departure crashes that were reported in the county from 2008 to 2012. Any curve with a radius between 500 and 1,200 feet received a star.


FIGURE 2-7
Phase I Curve Crashes by Radii - 500 to 1,200 feet (2008 to 2012)
2. Average Daily Traffic (ADT) - Traffic volumes over 350 vehicles per day present a risk factor in the Ward County and represent a higher risk for crashes (Figure 2-8). One-hundred percent of severe lane departure crashes occurred in curves with this ADT, while only 38 percent of curves are represented in this range. Therefore, curves with an ADT over 350 vehicles per day received a star.


FIGURE 2-8
Phase I Curve Crashes by Average Daily Traffic (ADT) - Greater than 350 Vehicles per Day (2008 to 2012)
3. Intersection on the Curve - In Ward County, the presence of an intersection within a curve increased the risk for a severe crash (Figure 2-9). Curves with at least one intersection within the curve received a star.
4. Visual Trap - A visual trap exists when the crest of a vertical curve is located before a horizontal curve or where a minor road, tree line, or line of utility poles continues on a tangent to the curve, thereby creating the illusion that the road continues straight ahead (Figure 2-10). The presence of a visual trap increased the risk of crashes in Ward County (Figure 2-9) and, therefore, received a star.
5. Severe Crashes - If a severe crash occurred on a curve between 2008 and 2012, the curve received a star.


FIGURE 2-9
Rural Curve Risk Factors for Ward County


FIGURE 2-10
Example of a Visual Trap - Minor Road Intersects Roadway on a Curve

Based on total and severe lane departure crashes in the county, curves with intersections and visual traps have a higher crash density (are more at risk) than those without such features. These risk factors have also been observed nationally.

Detailed curve analysis and results for the county is provided in Chapter 4. The five risk factors were used to prioritize curves in the county, with the highest-priority curves receiving the most stars. Curves were reviewed for proximity to high-priority curves and existing conditions as well.

Curves were screened for compliance with the Manual on Uniform Traffic Control Devices (MUTCD; 2009) requirement regarding traffic signs at horizontal curves. Under this requirement, a curve must have an advance horizontal alignment warning sign if the daily traffic is greater than 1,000 vehicles per day and if speed differentials (between the speed limit and the advisory speed) meet certain thresholds. A horizontal alignment sign and advisory speed plaque are recommended when the speed differential is 5 mph , and they are required if the speed differential is 10 mph or greater. Curve radius was used to estimate whether individual curves meet the speed differential requirements for advance warning signs and advisory speed plaques. The estimated advisory speeds (assuming a $55-\mathrm{mph}$ speed limit, 6-percent superelevation, and a friction factor consistent with the AASHTO Green Book) based on the curve radius are as follows:

- 900 to 1,100 feet -50 mph
- 700 to 900 feet -45 mph
- 500 to 700 feet -40 mph
- 300 to 500 feet -35 mph
- Under 300 feet - 30 mph or slower

For this analysis, no suggested advisory speed is provided for curves with a radius under 300 feet; these curves should be investigated further by the County to determine the appropriate advisory speed. Additionally, it is recommended that the County complete its own ball-bank indicator assessment of all curves to determine whether the curves on their road system meet the MUTCD requirement and to verify suggested advisory speeds.
If a curve was not selected as a project candidate through the LRSP risk assessment process (although the curve has an ADT greater than 1,000 vehicles per day and a radius under 1,100 feet), the curve was flagged for the County to determine the need for additional signs based on MUTCD guidance.

### 2.3.3 Rural Intersections - Crashes at Thru-STOP Intersections

On Ward County's rural local roads, a severe crash is most common at Thru-STOP intersections, ${ }^{2}$ where 100 percent of severe intersection crashes ( 6 crashes) occurred from 2008 to 2012. Severe right-angle and angle crashes are the most common types of crashes at these intersections (Figure 2-12). While there are few crashes in the county, statewide crash data supports these crash types as the most common at rural Thru-STOP locations.

[^2]

FIGURE 2-12
Ward County Rural Thru-STOP Intersections Severe Crash Types (2008 to 2012)

In Ward County, 63 rural intersections with 58 Thru-STOP locations were reviewed. The average severe crash density at rural Thru-STOP locations is 0.003 severe crash per intersection per year. This low density supports assessing an intersection risk based on the characteristics of the locations where severe crashes occurred. The following seven rural Thru-STOP risk factors were identified for severe right-angle crashes in the county:

1. ADT Cross Product - $\mathbf{1 0 0}$ percent of the severe right angle crashes at rural Thru-STOP intersections occurred at intersections with an ADT Cross Product ${ }^{3}$ of major and minor entering vehicles greater than 100,000 (Figure 2-13). An intersection was considered to have a higher risk of severe right angle crashes if the ADT Cross Product was greater than 100,000. These intersections received a star.


FIGURE 2-13
Phase I Rural Intersection ADT Cross Product (2008 to 2012)

[^3]2. Skew - As the intersection skew (the angle at which one road intersects another) increases, the crash risk also increases (Figure 2-14). At a 20-degree skew, the crash risk compared to that of a 90 -degree intersection is increased by approximately 10 percent. While the county's severe right-angle crash data set was too small to determine if skew plays a role in crashes, it has been proven nationally that the greater the skew, the greater the likelihood for a crash (Figure 2-15). Intersections with a skew greater than 20 degrees received a star.


Source: Highway Safety Manual, Volume III (Figure 14-6)
FIGURE 2-14
Intersection Skew Risk


FIGURE 2-15
Rural Intersection Risk Factors for the Phase I Counties (2008 to 2012)
3. On or Near a Curve -Research has shown that intersections located on or near a horizontal curve are subject to a higher level of risk. In this analysis, intersections located on or near a horizontal curve received a star.
4. Development Present - Research has shown that intersections with commercial development in one or more quadrants have a higher level of risk, possibly due to vehicles entering or exiting the development. Private residences or farms were not included as development. Ward County intersections with development present had more severe crash rates (Figure 2-15) and therefore received a star.
5. Railroad Crossing - Intersections on or near a railroad crossing are subject to increased risk because drivers must navigate the railroad tracks while approaching the intersection. National data were used for this risk factor due to the small number of severe crashes in the county. An intersection with a railroad crossing on one of the approaches received a star.
6. Previous STOP More than $\mathbf{5}$ Miles Before the Intersection - When traveling longer distances without encountering a STOP sign, drivers lose attention, and research has shown those intersections to be at higher risk (Figure 2-15). National data were used to confirm this risk factor. Intersections without a STOP sign within 5 miles received a star.
7. Total Crashes - If an intersection had any type of crash from 2008 to 2012, the intersection received a star.

Ward County had 108 total rural intersection crashes from 2008 to 2012,and only 6 of those crashes are severe. Due to the small number of severe crashes, some of the data and risk factors may be misleading based on the county data alone. National data were frequently used to confirm intersection risk factors .

Detailed intersection analysis and results for the county is provided in Chapter 4. Due to the large number of intersections, each intersection was prioritized using the seven risk factors by giving stars to each risk factor present. The highest-priority intersections received the most stars. In cases where intersections received the same number of stars, crash costs were used to break the tie and determine priority.

### 2.3.4 Urban Roadway Segments - Cities with Populations Greater than 5,000 (Minot)

Approximately 95 miles of urban local roads were reviewed, where 4,490 total and 57 severe crashes occurred from 2008 to 2012. Nationally, research has shown that rear-end and head-on crashes are most common on urban local roads.

Although a variety of data was collected for each local segment, only the following four risk factors were identified for Minot:

1. Average Daily Traffic (ADT) - Both rear-end and head-on crashes were overrepresented in road corridors with ADT volumes greater than 4,500 vehicles per day (Figure 2-16). (Note: This ADT volume includes data from Bismarck and Devils Lake.) Corridors with an ADT greater than 4,500 vehicles per day received a star.


FIGURE 2-16
Phase I Urban Segment Average Daily Traffic (ADT) (2008 to 2012)
2. Access Density - Rear-end and head-on crashes are overrepresented in Minot along corridors with access densities greater than or equal to 30 access points per mile (Figure 2-17), and therefore received a star.


FIGURE 2-17
Phase I Urban Roadway Segment Access Density (2008 to 2012)
3. Road Geometry - Crashes are overrepresented per corridor mile on roadways with three or more lanes (Figure 2-18), and were given a star.
4. Speed Limit -Severe rear-end and head-on crashes were overrepresented in low-speed corridors ( 40 mph or less) (Figure 2-19), and therefore received a star.


FIGURE 2-18
Phase I Urban Road Geometry (2008 to 2012)


FIGURE 2-19
Phase I Urban Roadway Segment Crashes by Speed (2008 to 2012)

Detailed urban segment analysis and results for Minot are provided in Chapter 4. The four risk factors were used to prioritize roadway segments, with the highest priority segments receiving the most stars. High-priority roadway segments were also reviewed from a corridor perspective so that suggested safety improvement projects create a consistent corridor throughout the urban area.

### 2.3.5 Urban Intersections - Right-Angle Crashes, Cities with Populations Greater than 5,000 (Minot)

In Minot, 104 intersections including 32 signalized intersections were analyzed. Of the over 1,600 total crashes, only 32 severe crashes occurred at the Minot urban intersections analyzed. These data support assessing an intersection's risk based on the characteristics of locations with severe crashes. A variety of information was collected on each intersection and from that, four risk factors for right angle crashes were chosen:

1. Traffic Control Device - Severe crashes are overrepresented at signalized intersections versus other intersection control types in urban areas (Figure 2-20). Therefore, signalized intersections received a star.


FIGURE 2-20
Phase I Urban Severe Crashes by Intersection Traffic Control Device (2008 to 2012)
2. Entering ADT - Higher volumes of vehicles entering intersections was considered a risk factor. Approximately $40 \%$ of righ angle crashes at signalized intersections in Minot occurred at intersections with an entering vehicles ADT between 10,000 and 15,000 vehicles per day (Figure 2-21). Therefore, any intersection with an entering vehicles ADT between 10,000 and 15,000 vehicles per day received a star.


FIGURE 2-21
Minot Urban Crashes by Intersection Entering Vehicles Average Daily Traffic (ADT)
3. Road Geometry - Severe and right-angle crashes were overrepresented on divided roadways with signalized intersections (Figure 2-22). Therefore, intersections on divided roadways received a star.
4. Severe Crashes - Any intersection where one or more severe crashes had occurred received a star.


FIGURE 2-22
Phase I Urban Crashes by Intersection Configuration

Detailed urban intersection right angle analysis and results for Minot is in Chapter 4. The four risk factors previously listed were used to help prioritize intersections with the highest priority intersections receiving the most stars. Right angle crash intersections were reviewed as urban
corridors to create a consistent corridor throughout the urban area and to discourage implementing strategies at just one or two high priority intersections along a corridor if the remaining intersections have the same characteristics.

### 2.3.6 Urban Intersections - Pedestrian/Bicycle Crashes, Cities with Populations Greater than 5,000 (Minot)

Similar analysis was completed for pedestrian and bicycle crashes at intersections. Only 13 severe pedestrian and bicycle crashes occurred at Minot intersections from 2008 to 2012, therefore the data has been combined with all of the Phase I urban intersection analysis. Four risk factors were identified based on the analysis:

1. Traffic Control Device - Severe pedestrian and bicycle crashes are overrepresented at signalized intersections versus other intersection control types in urban areas (Figure 2-23). Therefore, signalized intersections received a star.


FIGURE 2-23
Phase I Urban Pedestrian/Bike Crashes by Intersection Traffic Control Devices
2. Entering Vehicles ADT - A high volume of vehicles entering an intersection was considered a risk factor. Over $70 \%$ of the severe pedestrian and bicycle crashes occurred at intersections with an entering vehicles ADT greater than 15,000 vehicles per day. Therefore, any intersection with an entering vehicles ADT greater than 15,000 vehicles per day or greater received a star.
3. Pedestrian Generator - Intersections with adjacent land uses likely to generate pedestrian traffic (such as a bar or gas station) had a higher pedestrian and bicycle crash risk than other intersections (Figure 2-24). Therefore, an intersection with a pedestrian generator present received a star.
4. Pedestrian and Bicycle Crashes - Any intersections that had any bicycle or pedestrian crash from 2008 to 2012 received a star.


FIGURE 2-24
Phase I Pedestrian and Bicycle Crashes at Urban Signalized Intersection with a Pedestrian Generator

Detailed urban intersection pedestrian and bicycle analysis and results for Minot are provided in Chapter 4. The four risk factors were used to prioritize intersections with the highest-priority intersections receiving the most stars. Pedestrian and bicycle crash intersections were reviewed as urban corridors to create a consistent corridor throughout the urban area.

### 2.4 Ward County Risk Summary

Table 2-3 summarizes the risk factors, ranges, and sources used in the county's systemic analysis.

TABLE 2-3
Ward County Risk Summary

| Risk Factors | Ward County |  |  |
| :---: | :---: | :---: | :---: |
|  | Minimum | Maximum | Source |
| Rural Segments |  |  |  |
| ADT Range | 700 | Unlimited | Ward County |
| Lane Departure Density | 0.05 | Unlimited | Average Ward County |
| Access Density | 8 | Unlimited | Ward County |
| Curve Critical Radius Density | 0.3 | Unlimited | Average Ward County |
| ERA | 2 | 3 | Ward County |
| Rural Curves |  |  |  |
| Radius | 500 | 1200 | Northeast Region, Burleigh County, Ward County |
| ADT Range | 350 | Unlimited | Northeast Region, Burleigh County, Ward County |
| Intersection on Curve | Present |  | National |
| Visual Trap | Present |  | National |
| Severe Crashes | 1 | Unlimited | Ward County |

TABLE 2-3
Ward County Risk Summary

## Ward County

Risk Factors
Minimum
Maximum
Source
Rural Intersections

| ADT Cross Product | 100000 | Unlimited | Northeast Region, Burleigh County, Ward County |
| :---: | :---: | :---: | :---: |
| Skew | Present |  | National |
| On/Near Curve | Present |  | National |
| Development | Present |  | National |
| Railroad Crossing | Present |  | National |
| Previous STOP > 5 Miles | Present |  | National |
| Total Crashes | 1 | Unlimited | Ward County |
| Urban Segments |  |  |  |
| ADT | 4500 | Unlimited | Northeast Region, Burleigh County, Ward County |
| Road Geometry | Multi-Lane |  | Northeast Region, Burleigh County, Ward County |
| Access Density | 30 | Unlimited | Northeast Region, Burleigh County, Ward County |
| Corridor Speeds | Low |  | Northeast Region, Burleigh County, Ward County |

Urban Right Angle Crash Corridors

| Entering ADT | 10000 | 15000 | City of Minot |
| :---: | :---: | :---: | :---: |
| Traffic Control | Signal |  | Northeast Region, Burleigh County, Ward County |
| Road Geometry | Divided |  | Northeast Region, Burleigh County, Ward County |
| Severe Crashes | 1 | Unlimited | City of Minot |
| Urban Ped/Bike Crash Corridors |  |  |  |
| Traffic Control | Signal |  | Northeast Region, Burleigh County, Ward County |
| Entering ADT | 15,000 | Unlimited | Northeast Region, Burleigh County, Ward County |
| Pedestrian Generator | Yes |  | Northeast Region, Burleigh County, Ward County |
| Pedestrian/Bicycle Crashes | 1 | Unlimited | Northeast Region, Burleigh County, Ward County |

### 3.0 Priority Safety Strategies

### 3.1 Background

A variety of strategies are available to address each safety emphasis area. The implementation of high priority strategies will assist state and local agencies in reducing traffic-related fatalities and serious injuries. The primary sources of these strategies are the National Cooperative Highway Research Program (NCHRP) Report 500 series and the National Highway Traffic Safety Administration's (NHTSA's) Countermeasures That Work. Each guide includes a description of the problem, strategies, and model implementation processes. In addition, to assist practitioners in assessing the safety strategies, the guides document the expected effectiveness of each strategy by assigning them to one of the following categories:

- Proven: These strategies have been used in multiple locations with multiple studies, and have been demonstrated to be effective.
- Tried: These strategies have been implemented in many locations; however, no rigorous evaluations have been completed to determine their effectiveness.
- Experimental: These strategies represent ideas that are considered to be effective; however, the ideas have not been widely implemented or evaluated.


### 3.2 Initial/Comprehensive List of Potential Strategies

NCHRP safety strategies were the basis for identifying safety strategies for the LRSP. For the LRSP process, NDDOT team members sought to identify viable safety strategies for the top safety emphasis areas (see Tables 3-1 through 3-9). The LRSP team reviewed the full range of safety strategies, and did an initial screening based on cost and effectiveness. For example, the NCHRP report lists over 70 potential strategies to address intersection safety. The screening conducted by the LRSP team narrowed the list of strategies for all safety emphasis areas down to strategies considered to be the most applicable in North Dakota.
Behavioral strategies include information on the expected impact of the strategy based on current practice and results. Strategies with high impact have been shown to have influence on driver behavior.

Each infrastructure strategy includes information on the relative cost to implement or operate, along with the typical timeframe for implementation. Relative costs were separated into three categories:

- Low $=$ less than $\$ 10,000$ (per mile or location)
- Medium = between $\$ 10,000$ and $\$ 100,000$ (per mile or location)
- High = more than $\$ 100,000$ per mile or location

The typical timeframe to implement the strategy was also separated into three categories:

- Short = less than 1 year to implement
- Medium = between 1 and 2 years to implement
- Long = more than 2 years to implement

TABLE 3-1
Impaired Driving Strategies (Behavior Strategies)

| Objectives | Strategies | Effectiveness | Programs and Tactics | Impact |
| :---: | :---: | :---: | :---: | :---: |
| A - Eliminate Drinking and Driving | A1 - Require responsible beverage service policies for alcohol servers and retailers | Proven | Advocate for responsible alcohol server and retailer training | Medium |
|  | A2 - Employ screening and brief interventions regarding impaired driving risks | Tried | Enforcement or health care provider conducts brief intervention with crash victim after an alcohol-related crash (traumatic event) on risks and consequences of drinking and driving. Develop fact sheets and materials to be used. <br> North Dakota Impaired Driver Safety Facts: <br> http://www.ugpti.org/rtssc/briefs/downloads/2012 Impaired.pdf | Medium |
|  | A3 - Support community programs for alternative transportation | Tried | Employ "Safe Cab" initiatives via partnership among beer distributors, bar owners, and county/city community programs. Conduct public outreach on accessible safe-ride alternatives. | Medium |
|  | A4 - Promote sobriety initiatives for driving-under-the-influence (DUI) offenders | Proven | Promote $24 / 7$ and ignition interlock programs through educating local judicial and legal counsel members, probation officers, and counseling and treatment providers, as well as the general public. | Medium |
| B - Enforce DUI Laws | B1 - Conduct regular highvisibility DUI enforcement saturations | Proven | A saturation is a multi-agency, multi-squad car enforcement effort. Agencies work in collaboration to provide high-visibility enforcement for high-risk roadways. <br> High visibility enforcement includes multiple jurisdictions and/or multiple squads that are out at the same time patrolling in brightly colored vests, using signage about the enforcement and engaging the media for public outreach about the enforcement effort. | High |
|  | B2 - Conduct enforcement, education and awareness campaign of the targeted enforcement of zero tolerance laws for drivers under age 21 | Tried | Publicizing is best done through community events for the local media and a public education campaign in the community about the high visibility enforcement effort. | Low |
|  | B3 - Expand use of DUI sobriety checkpoints | Proven | Local law enforcement to expand the use of multi-jurisdictional sobriety checkpoints that include public outreach/media campaigns about the checkpoints. | High |
|  | B4 - Monitor convicted DUI offenders closely | Proven | Monitor judicial sentencing of local DUI courts or intensive supervision programs | High |

## TABLE 3-2

Seat Belt Use Strategies (Behavior Strategies)

| Objectives | Strategies | Effectiveness | Programs and Tactics | Impact |
| :---: | :---: | :---: | :---: | :---: |
| A - Enforce seat belt use laws | A1 - Conduct highly publicized enforcement campaigns to maximize restraint use. Specifically, nighttime belt enforcement saturation. | Proven | Publicizing is best done through community events for the local media and a public education campaign in the community about the enforcement. Methods for nighttime enforcement include having multi-agency and multiple squad cars in well-lit areas where slow-moving vehicles are passing and conducting seat belt observations for a limited time. | High |
|  | A2 - Pursue local ordinances for primary enforcement of seat belt laws. | Proven | Under tribal and/or local ordinance, pursue primary seat belt enforcement for occupants in all seating positions. <br> White Earth Tribal Council passes primary seat belt law. http://staging.dl-online.com/content/white-earth-council-passes-seat-belt-law | High |
| B - Maximize use of occupant restraints by all vehicle occupants | B1 - Encourage employers to 1) offer education programs to employees, and 2) enact traffic safety policies with clear consequences for failure to comply. | Tried | Utilize materials and policy statements designed for employers by Network of Employers for Traffic Safety. <br> For example, seat belt use employer polices and resources: http://www.mnsafetycouncil.org/nets/EducationMaterials.cfm | Medium |
|  | B2 - Brief intervention regarding unbelted risks | Tried | Enforcement or health care provider conducts brief intervention with crash victim after an unbelted crash (traumatic event) on unbelted risks and consequences. Develop fact sheets and materials to be used. <br> North Dakota Seat Belt Fact Sheet: <br> http://www.ugpti.org/rtssc/briefs/downloads/2012 SeatBelts.pdf | Medium |

TABLE 3-3
Motorcycle Safety Strategies (Behavior Strategies)

| Objectives | Strategies | Effectiveness | Programs and Tactics |  |
| :--- | :--- | :--- | :--- | :--- |
| A-Reduce the <br> number of motorcycle <br> crashes due to rider <br> impairment | A1 - Publicize and conduct <br> a high-visibility <br> enforcement of all laws <br> pertaining to motorcycle <br> riding. | Proven | Publicizing is best done through community events for the local <br> media and a public education campaign in the community about <br> the enforcement. High-visibility enforcement is when multiple <br> jurisdictions and/or multiple squads are out at the same time <br> patrolling in brightly colored vests, signage, and media outreach <br> about the enforcement. Methods for nighttime enforcement include <br> having multi-agency and multiple squad cars in well lit areas where <br> slow-moving riders are passing. |  |
|  | A2 - Support law <br> enforcement to identify <br> specific motorcycle rider <br> impairment behaviors that <br> have been shown to <br> contribute to crashes. | Proven | Provide enforcement with motorcycle rider DUI detection <br> resources. <br> National Highway Traffic Safety Administration (NHTSA) <br> Motorcycle rider DUI Detection Guide: <br> http://www.nhtsa.gov/people/injury/pedbimot/motorcycle/610DWIM <br> otorcyWeb/pages/ |  |
| B - Reduce the <br> number of motorcycle <br> crashes due to <br> unlicensed or <br> untrained motorcycle <br> riders | B1 - Ensure that licensing <br> and rider training programs <br> adequately teach and <br> measure skills and <br> behaviors required for <br> crash avoidance. | Tried | Host local motorcycle safety training courses to provide greater <br> access to riders. | Medium |

## TABLE 3-4

Speed and Aggressive Driving Strategies (Behavior Strategies)

| Objectives | Strategies | Effectiveness | Programs and Tactics | Impact |
| :---: | :---: | :---: | :---: | :---: |
| A - Deter aggressive driving in specific populations, including those with a history of such behavior, and at specific locations | A1 - Review crash data | Proven | Analyze crash data to define high-risk speed locations for enhanced enforcement and public outreach efforts. | High |
|  | A2 - Conduct high-visibility targeted enforcement of speeding and aggressive driving | Proven | Agencies work in collaboration to provide high-visibility enforcement for high-risk roadways. High-visibility enforcement includes multiple jurisdictions and/or multiple squads that are out at the same time patrolling in brightly colored vests, using signage about the enforcement, and engaging the media for public outreach about the enforcement effort. | High |
|  | A3 - Pursue local ordinances to utilize automated enforcement in high-risk areas. | Proven | Under local ordinance, pursue the use of automated enforcement (speed and red-light running cameras) in high-risk highway work zones and school crossing zones. <br> Ohio Law Enforcement Liaison Coordinator for example local ordinances using automated enforcement: <br> http://ohiohighwaysafetyoffice.ohio.gov/doc/2013LELMap.pdf | High |
| B - Maximize driver compliance and awareness | B1—Brief intervention regarding speed | Tried | Enforcement or health care provider conducts brief intervention with crash victim after crash due to excessive speed (traumatic event) on speed-related risks and consequences. Develop fact sheets and materials to be used. <br> ND Speed Fact Sheet: http://www.ugpti.org/rtssc/briefs/ | Medium |
|  | B2 - Increase driver awareness of speed using speed reader boards or driver feedback signs | Proven | Speed reader boards provide feedback to drivers on their actual speed. Some flash warnings when speeds reach a pre-set limit. Most effective in slowing traffic on residential streets, near school zones, and around playgrounds. | Medium |

TABLE 3-5
Young Driver Strategies (Behavior Strategies)

| Objectives | Strategies | Effectiveness | Programs and Tactics | Impact |
| :---: | :---: | :---: | :---: | :---: |
| A - Publicize, enforce, and adjudicate laws pertaining to young drivers | A1 - Publicize and conduct a high-visibility enforcement graduated drivers license (GDL) restrictions; cell and texting laws; underage drinking and driving; and seatbelt laws | Proven | Publicizing is best done through community events for the local media and a public education campaign in the community about the applicable laws, parental involvement and the enforcement. High-visibility enforcement is when multiple jurisdictions and/or multiple squads are out at the same time patrolling in areas frequented by teen drivers, with brightly colored vests, signage, and media outreach about the enforcement. | High |
| B - Actively engage parents in managing teen driving skill development | B1 - Encourage driver education providers (local schools and private providers) to require parent education component | Tried | Local driver education providers including local schools and private providers require 2-hour parent education program to educate parents about teen driving risks, Graduated driving license (GDL) provisions and their protections, parental role in supervising teen driving skill development, encourage selection of safer vehicles for teen driver, and to facilitate Parent/Teen Driving Agreements. <br> Teendriversource: Research Put into Action for PowerPoint presentations, parent/teen activities and other tools to be adopted for driver education providers. www.teendriversource.org <br> Teen Driving Parents/Alive at 25 for 1-hour parent, 4 -hour teen driving program including comprehensive publication, Teen Driver; A Family Guide to Teen Safe Driving: <br> http://www.nsc.org/products training/Products/MotorVehicleSafety/ <br> Pages/TeenDriving.aspx | Medium |
|  | B2 - Promote use of invehicle teen safety technology | Experimental | To help reduce and eliminate teen driving distractions and high-risk driving maneuvers (excessive speed, hard acceleration, deceleration, and swerves) promote the use of in-vehicle monitoring devices for parental monitoring and coaching. | High |
|  | B3 - Develop safe teen driving outreach materials for parents | Tried | Encourage driver education, local insurance, and public health organizations to provide parents of teen drivers with brochures, guides, and web resources to help parents understand risks, GDL provisions, their role, and how to develop a Parent/Teen Driving Agreement, and online driving logs. <br> Parents are the Key for free downloadable resources (can be customized): www.cdcgov/ParentsAreTheKey/ <br> Teen Driving Parents/Alive at 25 for the comprehensive guide: <br> Teen Driver; A Family Guide to Teen Safe Driving: <br> http://www.nsc.org/products training/Products/MotorVehicleSafety/ Pages/TeenDriving.aspx | Medium |

TABLE 3-5
Young Driver Strategies (Behavior Strategies)

| Objectives | Strategies | Effectiveness | Programs and Tactics | Impact |
| :--- | :--- | :--- | :--- | :--- |
|  | B4 - Provide information <br> on insurance provider <br> parent-teen safe driving <br> programs | Tried | Inform parents of local insurance programs providing policy <br> discounts for parents and their teen enrolling in parent-teen safe <br> driving programs. | Medium |
| C-Educate Young <br> Drivers | C1- Brief interventions <br> regarding driving risks and <br> consequences | Tried | When teen driver receives a moving violation or is involved in a <br> crash, enforcement or health care provider conducts brief <br> intervention with crash victim after crash (traumatic event) on <br> driving risks and consequences. | Medium |

## TABLE 3-6

Speeding Strategies (Infrastructure Strategies)

| Objectives | Strategies | Cost to Implement and Operate ${ }^{1}$ | Effectiveness | Timeframe for Implementation ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| A - Set appropriate speed limits | A1 - Install speed signage using variable message signs in school zones | Low | Tried | Medium |
| B - Communicate appropriate speeds through use of traffic control devices | B1 - Implement active speed warning signs, including dynamic message boards at rural to urban transitions | Low | Tried | Medium |
|  | B2 - Use in-pavement measures to communicate the need to reduce speeds | Moderate | Tried | Short |
| C - Ensure that roadway design and traffic control elements support appropriate and safe speeds | C1 - Effect safe speed transitions through design elements and on approaches to lower-speed areas | High | Tried | Long |

Notes:
${ }^{1}$ Cost: Low $=<\$ 100,000$ per intersection; Moderate $=\$ 100,000$ to $\$ 500,000$ per intersection; High $=>\$ 500,000$ per intersection
${ }^{2}$ Implementation: Short $=<1$ year; Medium $=1$ to 2 years; Long $=>2$ years
Source: NCHRP Report 500 Series, 2004

TABLE 3-7
Lane Departure Strategies (Infrastructure Strategies)

| Objectives | Strategies | Cost to Implement and Operate ${ }^{1}$ | Effectiveness | Timeframe for Implementation ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| A - Keep vehicles from encroaching on the roadside | A1 - Install shoulder rumble strips | Low | Proven | Short |
|  | A2 - Install enhanced pavement markings, edge line rumble strips, modified shoulder rumble strips, 6 -inch edge line, or embedded wetreflective pavement markings on sections with narrow or no paved shoulders | Low | Experimental/ Tried | Short |
|  | A3 - Provide enhanced shoulders, lighting, delineation (for example, Chevrons), or pavement markings for sharp horizontal curves | Low | Tried / Proven | Short |
|  | A4 - Provide skid-resistance pavement surfaces | Moderate | Proven | Medium |
|  | A5 - Apply shoulder treatments <br> * Eliminate shoulder drop-offs from paved road to unpaved shoulder <br> * Safety edge <br> * Widen and/or pave shoulders | Moderate | Experimental/ Proven | Medium |
| B - Minimize the likelihood of crashing into an object or overturning if the vehicle travels off the shoulder | B1 - Design safer slopes and ditches to prevent rollovers | Moderate to High | Proven | Medium |
|  | B2 - Remove/relocate objects in hazardous locations | Moderate to High | Proven | Medium |
| C-Reduce the severity of the crash | C1 - Improve design and application of barrier and attenuation systems | Moderate to High | Tried | Medium |
| D - Keep vehicles from encroaching into opposite lane | D1 - Install centerline rumble strips for two-lane roads | Low | Tried | Short |
|  | D2 - Reallocate total two-lane roadway width (lane and shoulder) to include a "buffer median" | Low | Tried | Medium |
| E-Minimize the likelihood of crashing into an oncoming vehicle | E1 - Use alternating passing lanes or four-lane sections at key locations (Swedish "2+1") | Moderate to High | Tried | Medium |
|  | E2 - Install cable median barriers for medians on multilane roads | Moderate | Tried | Medium |
| Notes: <br> ${ }^{1}$ Cost: Low $=<\$ 10,000$ per mile; Moderate $=\$ 10,000$ to $\$ 100,000$ per mile; High $=>\$ 100,000$ per mile <br> ${ }^{2}$ Implementation: Short $=<1$ year; Medium $=1$ to 2 years; Long $=>2$ years <br> Source: NCHRP Report 500 Series, 2003 |  |  |  |  |

## TABLE 3-8

Signalized Intersection Strategies (Infrastructure Strategies)

| Objectives | Strategies | Cost to Implement and Operate ${ }^{1}$ | Effectiveness | Timeframe for Implementation ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| A - Reduce frequency and severity of intersection conflicts through traffic control and operational improvements | A1 - Optimize signal operation (phasing/timing, etc.) | Low | Tried / Proven | Short |
|  | A2 - Optimize clearance intervals | Low | Proven | Short |
|  | A3 - Employ signal coordination along a corridor or route | Low | Proven | Medium |
|  | A4 - Employ emergency vehicle preemption | Moderate | Proven | Medium |
|  | A5 - Provide countdown timers, advanced walk phase, and other lowcost pedestrian/bicycle facility improvements | Low | Tried / Proven | Short |
| B - Reduce frequency and severity of intersection conflicts through geometric improvements | B1 - Provide/improve left-turn channelization | Moderate | Proven | Long |
| C - Improve pedestrian safety with signal improvements | C1 - Install countdown timers | Low | Tried | Short |
|  | C2 - Re-time signals to provide a leading pedestrian interval (advanced walk) | Low | Tried | Short |
| D - Improve driver awareness of intersections and signal control | D2 - Improve visibility of signals (overhead indications, 12-inch lenses, background shields, LEDs) and signs (mast arm mounted street names) and signs (mast arm mounted street names) at intersections | Low | Tried | Short |
| E - Improve driver compliance with traffic control devices | E1 - Supplement conventional enforcement of red-light running with confirmation lights; include a public information campaign to increase awareness and compliance | Low | Tried | Short |
| $\begin{aligned} & \text { F - Improve access } \\ & \text { management near } \\ & \text { signalized intersections } \end{aligned}$ | F1 - Restrict access to properties using driveway closures or turn restrictions | Low | Tried | Short |
|  | F2 - Restrict cross-median access near intersections | Low | Tried | Short |
| G - Improve safety through other infrastructure treatments | G1 - Restrict or eliminate parking on intersection approaches | Low | Proven | Short |
| Notes: <br> ${ }^{1}$ Cost: Low $=<\$ 100,000$ per intersection; Moderate $=\$ 100,000$ to $\$ 500,000$ per intersection; High $=>\$ 500,000$ per intersection <br> ${ }^{2}$ Implementation: Short = < 1 year; Medium = 1 to 2 years; Long =>2 years <br> Source: NCHRP Report 500 Series, 2004) |  |  |  |  |

TABLE 3-9
Unsignalized Intersection Strategies (Infrastructure Strategies)

| Objectives | Strategies | Cost to Implement and Operate ${ }^{1}$ | Effectiveness | Timeframe for Implementation ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| A - Improve management of access near unsignalized intersections | A1 - Implement driveway closure/relocations | Moderate | Tried | Medium |
|  | A2 - Implement driveway turn restrictions | Low | Tried | Short |
| B - Reduce the frequency and severity of intersection conflicts through geometric design improvements | B1 - Provide left-turn lanes at intersections | Moderate | Proven | Medium |
|  | B2 -- Provide offset left-turn lanes at intersections | Moderate to High | Tried | Medium |
|  | B3 - Provide offset right-turn lanes at intersections | Moderate to High | Tried | Medium |
|  | B4 - Restrict or eliminate turning maneuvers by providing channelization or closing median openings | Low | Tried | Short |
|  | B5 - Realign intersection approaches to reduce or eliminate intersection skew | High | Proven | Medium |
|  | B6 - Improve pedestrian and bicycle facilities to reduce conflicts between motorists and nonmotorists | Moderate | Varies | Medium |
|  | B7 - Use indirect left-turn treatments to minimize conflicts at divided highway intersections | Moderate | Tried | Medium |
| C - Improve sight distance at unsignalized intersections | C1 - Clear sight triangle on approaches and in medians by clearing grub, eliminating parking, etc. | Low | Tried | Short |
| D - Improve driver awareness of intersections as viewed from the intersection approach | D1 - Improve visibility of intersections by providing enhanced signing, delineation or pavement markings/messages (stop bar, larger regulatory signs, LED stop signs, etc.) | Low | Tried | Short |
|  | D2 - Improve visibility of intersections by providing appropriate street lighting | Low to Moderate | Proven | Medium |

TABLE 3-9
Unsignalized Intersection Strategies (Infrastructure Strategies)

| Objectives | Strategies | Cost to Implement and Operate ${ }^{1}$ | Effectiveness | Timeframe for Implementation ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | D3 - Install larger regulatory and warning signs at intersections, including the use of dynamic warning signs at appropriate intersections | Low | Tried | Short |
|  | D4 - Call attention to the intersection by installing rumble strips or splitter islands on intersection approaches | Low to Moderate | Tried | Medium |
| E - Appropriate intersection traffic control to minimize crash frequency and severity | E1 - Construct roundabouts at appropriate locations | High | Proven | Long |
| F - Reduce operating speeds on specific intersection approaches | F1 - Install dynamic speed feedback signs | Low | Proven | Short |
| Notes: <br> ${ }^{1}$ Cost: Low $=<\$ 50,000$ per intersection; Moderate $=\$ 50,000$ to $\$ 500,000$ per intersection; High $=>\$ 500,000$ per intersection ${ }^{2}$ Implementation: Short $=<1$ year; Medium $=1$ to 2 years; Long $=>2$ years <br> Source: NCHRP Report 500 Series, 2003 |  |  |  |  |

### 3.3 Safety Strategies Workshop

A Safety Planning Workshop was held with Ward County in the City of Minot on June 5, 2013. Two additional workshops were held in Burleigh County and Devils Lake (northeast region) as part of the LRSP Phase I analysis. The primary focus of the safety workshop was to discuss and prioritize the safety strategies.

The basic workshop structure included introductions and an overview of the current NDDOT safety program. This was followed by local speakers:

- Dana Larsen, Ward County Engineer
- Sheriff Steve Kukowski, Ward County Sheriff

These speakers shared information on local safety initiatives and programs. The morning was concluded with a review of the latest crash data on the local roadway system. In the afternoon, the workshop participants separated into groups to discuss potential safety strategies and begin the process of prioritizing the strategies. The groups included one that reviewed and discussed driver-behavior strategies and another for roadway infrastructure strategies. The final agenda item was a voting exercise where each participant voted for their preferred strategies to focus efforts on in the future local roadway program in their regions.
Workshop participants included county and city representatives, county commissioners, enforcement representatives, and NDDOT staff in order to include a variety of backgrounds and experiences to enable valuable interaction and discussions during the workshop.

### 3.4 Prioritizing Safety Strategies

Through the group (infrastructure and driver behavior) discussion and voting exercise, the top safety strategies for Ward County are:

- Behavioral strategies
- Conduct regular high-visibility driving-under-the-influence (DUI) enforcement saturations
- Conduct high-visibility targeted enforcement of speeding and aggressive driving
- Conduct high-visibility targeted enforcement to maximize seat belt use
- Encourage driver education providers to require parent education component
- Infrastructure strategies
- Rumble strips and enhance edge line (modified shoulder rumbles strip, 6-inch edge line)
- Design safer slopes and ditches to prevent rollovers if a vehicle leaves the roadway
- Intersection lighting
- Provide enhanced shoulders, delineation, or pavement markings for sharp horizontal curves

Safety projects that are developed as part of this LRSP are considered eligible for funding through the state's Highway Safety Improvement Program (HSIP). The managers of this program have identified implementation cost and effectiveness as priorities in their evaluation process of selecting projects for funding. Low-cost projects allow the limited funding to support a wider deployment and the use of proven effective strategies provides the highest level of confidence that a given project will result in an overall crash reduction.
The ability of the selected strategies to reduce crashes is based on information in FHWA's CMF [Crash Modification Factors] Clearinghouse. Table 3-10 provides a summary of the crash reduction factors that were found in the CMF Clearinghouse for safety strategies considered and/or suggested for Ward County, along with an estimated unit cost for each strategy. Most factors reported are based on research that was assigned with higher-quality ratings.

## TABLE 3-10

Proposed Strategies, Crash Reduction Factors, and Typical Installation Costs

| Strategy | Crash Reduction Factor ${ }^{\text {a }}$ | Typical Installation Costs |
| :---: | :---: | :---: |
| Impaired Driving |  |  |
| Conduct regular high-visibility DUI enforcement saturations | 3\% | Up to \$50 per hour of officer overtime |
| Speed and Aggressive Driving |  |  |
| Conduct high-visibility targeted enforcement of speeding and aggressive driving | 3\% | Up to $\$ 50$ per hour of officer overtime |
| Seat Belt Use |  |  |
| Conduct highly publicized enforcement campaigns to maximize restraint use. Specifically, night time belt enforcement saturation | 3\% | Up to $\$ 50$ per hour of officer overtime |
| Young Drivers |  |  |
| Publicize and conduct a high visibility enforcement of graduated drivers license (GDL) restrictions, cell and texting laws, underage drinking and driving and seat belt laws | 3\% | Depends on duration |
| Encourage driver education providers to require parent education component | 2\% | \$1,500 per school district |
| Brief interventions by health care providers following a crash regarding driving risks and consequences | N/A | Low to Moderate |
| Rural Segments |  |  |
| 4-inch latex edge line |  | \$400 per mile |
| 6 -inch latex edge line | $10 \%$ to $45 \%$ all rural serious crashes | \$650 per mile |
| Shoulder or edge line rumble strip | 20\% run off road crashes | $\$ 3,000$ per mile [shoulder] $\$ 3,500$ per mile [edge] |
| Ground in wet-reflective markings |  | \$8,500 per mile |
| Centerline rumble strip | 40\% head-on/sideswipecrashes | \$3,000 per mile |
| 6-inch centerline |  | \$650 per mile |
| Rural Curves |  |  |
| Chevrons | 20\% to 30\% | \$3,300 per curve |
| Arrow board only |  | \$500 per curve |
| Advance warning sign and advisory speed plaque |  | \$800 per curve |

TABLE 3-10
Proposed Strategies, Crash Reduction Factors, and Typical Installation Costs

| Strategy | Crash Reduction Factor ${ }^{\text {a }}$ | Typical Installation Costs |
| :---: | :---: | :---: |
| 2-foot paved shoulder and shoulder rumble strips | $20 \%$ to $30 \%$ run-off-theroad crashes | \$37,000 per mile <br> $+\$ 3,000$ per mile |
| Rural Intersections |  |  |
| Roundabout | 20\% to 50\% all crashes/ 60\% to $90 \%$ right-angle crashes | \$1,000,000 per intersection |
| Directional median (RCI or J-Turn) | 17\% all crashes/ 100\% angle crashes | \$750,000 per intersection |
| Mainline dynamic warning sign | 50\% all crashes/ $75 \%$ severe right-angle crashes | \$50,000 per intersection |
| Close median |  | \$25,000 per intersection |
| Intersection lighting | $25 \%$ to $40 \%$ nighttime crashes | \$6,000 per street light |
| Upgrade signs and pavement markings | $40 \%$ upgrade of all signs and pavement marking/ 15\% for STOP AHEAD pavement marking | \$1,850 per approach ${ }^{\text {b }}$ |
| Clear sight triangle | 37\% serious injury crashes | \$2,450 per intersection ${ }^{\text {d }}$ |
| Urban |  |  |
| Conversions (three-lane/five-lane) | 30\% to 50\% | \$17,000 per mile [3-lane] $\$ 22,000$ per mile [5-lane] + \$25,000 per signalized intersection for updates (for example, loop and signal head placement) |
| Access management | 5\% to 31\% | \$300,000 per mile ${ }^{\text {e }}$ |
| Signal - confirmation lights | $25 \%$ to $84 \%$ reduction in violations | \$1,000 per two approaches |
| Pedestrian/bicycle - advanced walk | Up to 60\% pedestrian/ vehicle crashes | \$0 per intersection |
| Pedestrian/bicycle - countdown timers | $25 \%$ vehicle/pedestrian crashes | \$10,000 per intersection |
| Pedestrian/bicycle - curb extensions | Increase in vehicles yielding to pedestrians | \$15,000 per corner |
| Pedestrian/bicycle - median refuge island | $46 \%$ in vehicle/pedestrian crashes | \$10,000 per approach |
| Notes: <br> ${ }^{\text {a }}$ Crash reduction factors based on review of CMF Clearinghouse and other published research <br> ${ }^{\text {b }}$ Includes $\$ 350$ per STOP sign, $\$ 350$ per junction sign assembly, $\$ 450$ per STOP AHEAD sign, $\$ 450$ per STOP AHEAD pavement marking message, and $\$ 250$ per stop bar <br> ${ }^{\text {c }}$ Reduction based on increasing sight distance triangle <br> ${ }^{d}$ Inclusive of sigh upgrades identified and materials and labor for clearing of sight triangle. <br> ${ }^{e}$ For management of unsignalized intersection movements within a corridor that has a divided median. Typical project may include minor street diverters, signed turn restrictions, and median closings. <br> N/A = not applicable |  |  |

### 4.0 Ward County Infrastructure Safety Projects

### 4.1 Ward County Proactive Project Decision Process

The primary objectives of the LRSP effort are to identify low-cost, safety-related infrastructure projects focused on each county's documented safety emphasis areas and target crash types. These emphasis areas account for the greatest number of severe crashes occurring on the local road system. Mitigating the factors that contribute to these crashes will assist each county in reducing severe crashes on the local road system.
Projects were developed that include identifying a specific improvement at a specific location based on risk factors described in Chapter 2 and the high-priority safety strategies described in Chapter 3. Improvement strategies are consistent with NDDOT's SHSP with a focus on proven effectiveness at reducing the target type of crash and low cost. Proven effective strategies give safety program managers the highest level of confidence that the deployment will result in a reduction of crashes. Low-cost strategies allow improvements to be widely deployed across a system to address the low density of crashes and are less expensive than complete reconstruction of high-risk locations. Project development and mitigation focused on the following improvements:

- Rural
- Lane-departure crashes along roadway segments and in curves
- Intersection-related crashes
- Urban
- Rear-end and head-on crashes in segments
- Angle crashes and pedestrian and bicycle crashes at intersections

For consistency across the northeast region, project decision trees were created so that locations with similar characteristics across the region received the same suggested mitigation treatment. Projects were chosen based on the identification of at-risk locations and the availability of proven strategies for crash reduction. This resulted in a systemic focus on rural paved segments, horizontal paved curves, and rural intersections. In cities with populations over 5,000, the focus was on arterial and collector roadway segments and intersections along these segments. Projects were originally suggested based on the technical analysis and then were revised in accordance with input by the local agencies and NDDOT.

High-priority rural roadway segment projects focused on addressing the most common type of severe segment related crash - a single-vehicle, lane-departure crash - by implementing road edge improvements to alert drivers when they are drifting too far to the edge of the road (Figure 4-1).


FIGURE 4-1
High-Priority Rural Roadway Segment Project Decision Tree

High-priority rural curve projects focused on enhancing the curve delineation to improve driver's ability to successfully navigate the curves (Figure 4-2). As shown in the figure, there are three ways in which a curve is eligible for a safety improvement project.


FIGURE 4-2
High-Priority Rural Curve Project Decision Tree

High-priority rural intersection projects (Figure 4-3) focused on addressing the most common type of severe intersection crash - a right-angle collision - by making the intersection more visible to drivers and by reducing the number of intersection conflicts. Examples of suggested projects are shown in Figure 4-4.


FIGURE 4-3
High-Priority Rural Intersection Project Decision Tree


FIGURE 4-4
Intersection Safety Strategies Considered for Deployment

High-priority urban roadway segment projects focused on reducing rear-end and head-on crashes by creating buffer space in the middle of the roadway by converting to a three-lane or five-lane roadway and by better managing access along divided arterials (Figure 4-5).


FIGURE 4-5
High-Priority Urban Roadway Segment (Turning) Project Decision Process

High-priority urban right-angle intersection projects focused on reducing right-angle crashes by reducing red-light running and access management to reduce the number of conflict points along a corridor, particularly at signalized intersections (Figure 4-6).


FIGURE 4-6
High-Priority Urban Right-Angle Intersection (Signalized) Project Decision Process

High-priority urban pedestrian and bicycle intersection projects focused on reducing pedestrian and bicycle crashes by providing with shorter crossing distances or median refuge islands, as well as advanced walk intervals and countdown timers at signalized intersections (Figure 4-7).


FIGURE 4-7
High-Priority Urban Pedestrian and Bicyclist Intersection Project Decision Process

Project forms were completed for each high-priority intersection, curve, and roadway segment, including a description of the location, brief crash history, ranking factors, a picture from the LRSP process of the location (if needed), and the identified safety strategy. These forms were formatted so they could be submitted directly through the HSIP process, but may require supplemental information for the evaluation and scoring process.

The suggested low-cost safety projects for the counties and the City of Minot are described in the following sections. The costs assigned to each project are planning level estimates and do not include right-of-way or some other supplemental costs such as signal revisions or replacement for three-lane conversion projects. Because of funding limitations, all potential projects would not be completed in 1 year. The actual schedule for implementing individual projects will necessitate securing funding from the state's HSIP. The safety planning process followed for Ward County is consistent with the North Dakota SHSP. In addition, several of the high-priority safety strategies are among those recommended for the state road system in the state's Strategic Plan.

It is not expected or required that each county pursue safety projects in the suggested ranking order. The ranking suggests general priorities, given that actual project development decisions will be made by each county staff based on economic, social, and political issues and in coordination with other pavement and reconstruction projects that are part of the county's Capital Improvement Program.

Many project details are still undetermined, including general project termini. Each county will determine specific project details (such as termini and exceptions) as decisions regarding implementation of specific projects are made. These decisions may require that the county coordinate with various municipal departments, the public, and other county transportation departments.
The total cost of projects suggested for Ward County and the City of Minot is $\$ 2,994,286$. A cost breakout by project type is provided in Table 4-1.

TABLE 4-1
Total Project Costs

| Rural Projects | Intersections | Segments | Curves | Total |
| :---: | :---: | :---: | :---: | :---: |
| Ward County | $\$ 2,122,800$ | $\$ 366,070$ | $\$ 109,276$ | $\$ 2,598,146$ |
| Urban Projects | Segments | Right Angle <br> Intersections | Pedestrian and <br> Bicyclist <br> Intersections | Total |
| City of Minot | $\$ 92,140$ | $\$ 114,000$ | $\$ 190,000$ | $\$ 396,140$ |
| TOTAL |  |  |  |  |

## Ward County

The total project cost suggested for Ward County is $\$ 2,598,146$. The project cost breakout for intersection, roadway segment, and curve projects are listed in Table 4-2. High-priority locations that received a project are shown in Figure 4-8 and Tables 4-3 through 4-5. These locations are described in further detail in Appendix A along with priority rankings and suggested project sheets.

TABLE 4-2
Ward County Project Costs

| Project Type | Cost |  |
| :--- | :--- | :--- |
| Intersections | $\$$ | $2,122,800$ |
| Roadway Segments | $\$$ | 366,070 |
| Curves | $\$$ | 109,276 |
| Total | $\$$ | $2,598,146$ |

TABLE 4-3
Ward County - Rural Intersection Projects

| $\begin{aligned} & \text { Inter } \\ & \text { ID } \end{aligned}$ | Description | Risk Ranking | Directio nal Median | Mainline <br> Dynamic <br> Warning <br> Sign | Install Street Lights | Signs \& Markings | Review Signs \& Clearing/ Grubbing | Project <br> Cost (\$) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.01 | 436th Ave NW (Ward 2) \& 6th St NW/415th Ave NW (Ward 1) | $\star \star \star \star$ | - | - | x | x | x | \$9,950 |
| 2.01 |  <br> 436th Ave NW (Ward 2) | $\star \star \star$ | - | - | - | x | x | \$5,700 |
| 2.02 | US Highway 52 \& 422nd Ave NW/6th St NE (Ward 2) | $\star \star \star \star$ | - | x | Installed | x | x | \$54,300 |
| 5.02 | US Highway 52 \& 394th St NW (Ward 5) | $\star \star \star$ | - | - | x | x | x | \$10,300 |
| 5.03 | US Highway 52/2nd Ave \& Power St/Main St (Ward 5) | $\star \star \star \star \star$ | - | - | Installed | x | x | \$4,300 |
| 6.02 | ND State Highway 28 \& 198th Ave NW/Washington Ave W (Ward 6) | $\star \star \star$ | - | - | Installed | x | x | \$3,150 |
| 8.01 | US Highway 52 \& 198th St NW (Ward 8) | $\star \star \star \star \star$ | - | - | Installed | x | x | \$5,700 |
| 8.03 | US Highway 83 \& 128th Ave NW/NE (Ward 8) | $\star \star \star \star$ | x | - | x | x | x | \$760,750 |
| 9.02 | 338th St SW (Ward 9) \& ND Highway 23/247th Ave SW | $\star \star \star \star$ | - | x | x | x | x | \$61,450 |
| 10.01 | US Highway 2 \& 72nd St NW (Ward 10) | $\star \star \star$ | - | x | Installed | x | x | \$53,500 |
| 10.02 | Co Rd 15 W (Ward 15) \& 46th Ave NW (Ward 10) | $\star \star \star$ | - | - | Installed | x | x | \$3,500 |
| 10.03 | US Highway 83 \& 46th Ave NW (Ward 10) | $\star \star \star \star$ | - | x | x | x | x | \$60,300 |
| 11.01 | US Highway 52 \& 184th St NW (Ward 11) | $\star \star \star \star$ | - | x | x | x | x | \$59,600 |
| 14.04 | US Highway 83/S Broadway St \& 54th Ave SW/SE (Ward 14) | $\star \star \star$ | - | x | x | x | x | \$62,150 |

TABLE 4-3
Ward County - Rural Intersection Projects

| Inter ID | Description | Risk Ranking | Directio nal Median | Mainline Dynamic Warning Sign | Install <br> Street <br> Lights | Signs \& Markings | Review Signs \& Clearing/ Grubbing | Project <br> Cost (\$) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14.07 | US Hwy 52 \& 37th Ave SE (Ward 14) | $\star \star \star$ | - | X | X | X | X | \$61,450 |
| 16.02 | US Hwy 52 \& 79th Ave SE (Ward 16) | $\star \star \star$ | - | - | X | x | X | \$12,150 |
| 17.01 | US Hwy 2 \& 54th St/62nd St NW (Ward 17) | $\star \star \star$ | X | - | Installed | x | x | \$753,850 |
| 23.01 | 139th St SE (Ward 23) \& ND Hwy 23 | $\star \star \star$ | - | - | X | X | X | \$9,850 |
| 24.02 | 142nd St SW (Ward 501) \& 359th Ave SW/ND Hwy 53 (Ward 24) | $\star \star \star$ | - | - | - | X | X | \$5,700 |
| $\begin{array}{r} 501.0 \\ 1 \end{array}$ | 142nd St SW (Ward 501) \& 247th Ave SW/ND Hwy 23 | $\star \star \star$ | - | - | - | X | X | \$6,150 |
| $\begin{array}{r} 504.0 \\ 1 \\ \hline \end{array}$ | US Hwy 52 \& Co Rd 19 S (Ward 504) | $\star \star \star$ | - | X | X | X | X | \$59,500 |
| $\begin{array}{r} 504.0 \\ 2 \end{array}$ | US Hwy 52 \& Co Rd 19 S (Ward 504) | $\star \star \star$ | - | X | X | X | X | \$59,500 |
|  |  | TOTALS | 2 | 9 | 12 | 22 | 22 | \$2,122,800 |

TABLE 4-4
Ward County - Rural Segment Projects

| Corrid or ID | Local Street Name | Start | End | Shoulder Rumble Strip | Edge Line Rumble Strip |  | Center Line Rumble | Project Cost (\$) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.01 | 534th St | State Route 50 | 436th Ave | 0.0 | 8.8 | 0.0 | 0.0 | \$30,800 |
| 2.02 | 436th Ave | 590th ST | Ward 11 | 5.8 | 0.0 | 0.0 | 0.0 | \$17,400 |
| 5.03 | Main St | US Hwy 52 | Ward 7 | 0.0 | 0.0 | 1.8 | 0.0 | \$1,170 |
| 8.01 | 128th Ave | US Hwy 52 | US Hwy 83 | 12.9 | 0.0 | 0.0 | 0.0 | \$38,700 |
| 9.03 | 310th St | Ward 20 | Ward 14 | 15.5 | 0.0 | 0.0 | 0.0 | \$46,500 |
| 10.02 | 19th Ave | Granly St | US Hwy 2 | 7.6 | 0.0 | 0.0 | 0.0 | \$22,800 |
| 12.03 | 4th Ave | 55th St | US Hwy 2 | 4.1 | 0.0 | 0.0 | 4.1 | \$24,600 |
| 14.02 | 54th Ave | Ward 9 | 62nd St | 0.0 | 17.8 | 0.0 | 0.0 | \$62,300 |
| 14.04 | 54th Ave | US Hwy 83 | 1 mile east of 13th St | 0.0 | 2.1 | 0.0 | 0.0 | \$7,350 |
| 15.02 | 57th St | US Hwy 83 | Ward 17 | 0.0 | 2.2 | 0.0 | 2.2 | \$14,300 |
| 15.03 | $\begin{gathered} \text { County Road } \\ 15 \mathrm{~W} \end{gathered}$ | Ward 17 | Ward 10 | 0.0 | 2.8 | 0.0 | 2.8 | \$18,200 |
| 15.04 | County Road 15 W | Ward 10 | 1 mile South of 86th St | 0.0 | 2.2 | 0.0 | 0.0 | \$7,700 |
| 17.02 | 54th St | US Hwy 2 | Ward 15 | 0.0 | 1.3 | 0.0 | 1.3 | \$8,450 |
| 23.04 | 153rd St | US Hwy 2 | 66th St | 0.0 | 9.1 | 0.0 | 0.0 | \$31,850 |
| 24.02 | 359th Ave | 142nd St | US Hwy 83 | 0.0 | 9.7 | 0.0 | 0.0 | \$33,950 |
|  |  |  | TOTALS | 45.9 | 56.0 | 1.8 | 10.4 | \$ 366,070 |

TABLE 4-5
Ward County - Rural Curve Projects

| Corrid or ID | Local Street Name | Start | End | No. of Curves | Project Cost (\$) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.01 | 534th St | State Route 50 | 436th Ave | 4 | \$ | 5,265 |
| 2.02 | 436th Ave | 590th ST | Ward 11 | 2 | \$ | 4,209 |
| 5.03 | Main St | US Hwy 52 | Ward 7 | 6 | \$ | 25,727 |
| 6.03 | 198th Ave | State Route 28 | Reneville 6 | 1 | \$ | 3,755 |
| 8.01 | 128th Ave | US Hwy 52 | US Hwy 83 | 1 | \$ | 6,373 |
| 9.03 | 310th St | Ward 20 | Ward 14 | 4 | \$ | 1,818 |
| 10.01 | 184th St | Ward 9 | Granly St | 4 | \$ | 1,364 |
| 10.02 | 19th Ave | Granly St | US Hwy 2 | 4 | \$ | 17,745 |
| 10.03 | 60 th St | Ward 15 | US Hwy 83 | 3 | \$ | 1,364 |
| 12.03 | 4th Ave | 55th St | US Hwy 2 | 2 | \$ | 9,109 |
| 14.04 | 54th Ave | US Hwy 83 | 1 mile east of 13th St | 5 | \$ | 8,873 |
| 14.06 | 37th St | Ward 14A | 72nd Ave | 1 | \$ | 4,555 |
| 15.04 | County Road 15 W | Ward 10 | 1 mile South of 86th St | 4 | \$ | 5,118 |
| 17.01 | 62nd St | Ward 14 | US Hwy 2 | 3 | \$ | 5,464 |
| 17.02 | 54th St | US Hwy 2 | Ward 15 | 6 | \$ | 2,727 |
| 23.02 | 21st Ave | State Route 23 | US Hwy 53 | 1 | \$ | 4,555 |
| 501.03 | 142nd St | State Route 22 | Ward 22 | 1 | \$ | 1,255 |
|  |  |  | TOTALS | 52 | \$ | 109,276 |



FIGURE 4-8
High-Priority Rural Locations

## City of Minot

The total project cost suggested for the City of Minot is $\$ 396,140$. The project cost breakout for roadway segment, right-angle intersection, and pedestrian/bicyclist intersection projects are listed in Table 4-6. High-priority locations that received a project are shown in Figure 4-9 and Tables 4-7 through 4-9. These locations are described in further detail in Appendix A along with priority rankings and suggested project sheets.

TABLE 4-6
City of Minot Project Costs

| Project Type | Cost |
| :--- | :---: |
| Roadway Segments | $\$ 92,140$ |
| Right-Angle Intersections | $\$ 114,000$ |
| Pedestrian and Bicyclist <br> Intersections | $\$ 190,000$ |
| Total | $\$ 396,140$ |

TABLE 4-7
City of Minot - Urban Segment Projects

| Corridor ID | Local Street Name | Risk Ranking | 2-Lane to 3-Lane Conv <br> (miles) | Project Cost (\$) |
| :---: | :--- | ---: | :---: | :---: |$|$| 802.02 | 16th St SW | $\star \star \star \star$ |
| :---: | :---: | :---: |

TABLE 4-8
City of Minot - Right Angle Intersections

| Corridor ID | Local Street Name | Confirmati <br> on Lights | Access <br> Management | Project Cost (\$) |
| :---: | :---: | :---: | :---: | :---: |
| 83.01 | Broadway St (20th Ave to Central) | 5 | Yes | $\$ 105,000$ |
| 83.02 | Broadway St (4th Ave to 30th Ave) | 4 |  | $\$ 4,000$ |
| 802.01 | 16th Street (22nd to Hwy 2) | 5 |  | $\$ 5,000$ |
|  | TOTALS | $\mathbf{1 4}$ | $\mathbf{1}$ | $\mathbf{\$ 1 1 4 , 0 0 0}$ |

## TABLE 4-9

City of Minot - Urban Pedestrian and Bicycle Projects

| Corridor ID | Local Street Name | Advanced <br> Walk | Countdown <br> Timers | Curb <br> Extensions | Project Cost <br> $(\$)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 83.01 | US 83 (20th Ave to Central Ave) | 4 | 4 | 2 | $\$ 70,000$ |
| 83.02 | US 83 (4th Ave to 30th Ave NW) | 4 | 4 |  | $\$ 40,000$ |
| 802.02 | 16th Street (2nd Ave to 21st Ave NW) | 2 | 2 | 4 | $\$ 80,000$ |
|  |  | 11 | 11 | 6 | $\$ 190,000$ |



FIGURE 4-9
High-Priority Urban Corridor

Ward County Rural Intersection Projects

| Intersection ID | Risk Ranking | Risk Ranking | Directional Median | Close <br> Median | Mainline <br> Dynamic Warning Sign | Install <br> Street <br> Lights | Signs \& Markings | Review Signs \& Clearing/G rubbing | Project <br> Cost (\$) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.01 | 436th Ave NW (Ward 2) \& 6th St NW/415th Ave NW (Ward 1) | * * $\star$ * | - |  | - | X | X | $x$ | \$9,950 |
| 2.01 | 590th St NW (Ward 2) \& 436th Ave NW (Ward 2) | $\star \star \star$ | - |  | - | - | X | X | \$5,700 |
| 2.02 | US Highway 52 \& 422nd Ave NW/6th St NE (Ward 2) | $\star \star \star \star$ | - |  | x | X | X | X | \$54,300 |
| 5.02 | US Highway 52 \& 394th St NW (Ward 5) | $\star \star \star$ | - |  | - | X | X | x | \$10,300 |
| 5.03 | US Highway 52/2nd Ave \& Power St/Main St (Ward 5) | $\star \star \star \star \star$ | - |  | - | - | X | X | \$4,300 |
| 6.02 | ND State Highway 28 \& 198th Ave NW/Washington Ave W (Ward 6) | $\star \star \star$ | - |  | - | - | X | X | \$3,150 |
| 8.01 | US Highway 52 \& 198th St NW (Ward 8) | $\star \star \star \star \star$ | - |  | - | - | x | x | \$5,700 |
| 8.03 | US Highway 83 \& 128th Ave NW/NE (Ward 8) | $\star \star \star \star$ | x |  | - | X | X | x | \$760,750 |
| 9.02 | 338th St SW (Ward 9) \& ND Highway 23/247th Ave SW | $\star \star \star \star$ | - |  | X | X | X | X | \$61,450 |
| 10.01 | US Highway 2 \& 72nd St NW (Ward 10) | $\star \star \star$ | - |  | X | X | X | X | \$53,500 |
| 10.02 | Co Rd 15 W (ward 15) \& 46th Ave NW (Ward 10) | $\star \star \star$ | - |  | - | - | X | X | \$3,500 |
| 10.03 | US Highway 83 \& 46th Ave NW (Ward 10) | $\star \star \star \star$ | - |  | x | X | X | x | \$60,300 |
| 11.01 | US Highway 52 \& 184th St NW (Ward 11) | $\star \star \star \star$ | - |  | X | X | X | X | \$59,600 |
| 14.04 | US Highway 83/S Broadway St \& 54th Ave SW/SE (Ward 14) | $\star \star \star$ | - |  | X | X | X | x | \$62,150 |
| 14.07 | US Hwy 52 \& 37th Ave SE (Ward 14) | $\star \star \star$ | - |  | X | X | X | X | \$61,450 |
| 16.02 | US Hwy 52 \& 79th Ave SE (Ward 16) | $\star \star \star$ | - |  | - | X | X | x | \$12,150 |
| 17.01 | US Hwy 2 \& 54th St/62nd St NW (Ward 17) | $\star \star \star$ | x |  | - | X | x | x | \$753,850 |
| 23.01 | 139th St SE (Ward 23) \& ND Hwy 23 | $\star \star \star$ | - |  | - | X | X | X | \$9,850 |
| 24.02 | 142nd St SW (Ward 501) \& 359th Ave SW/ND Hwy 53 (Ward 24) | $\star \star \star$ | - |  | - | - | X | X | \$5,700 |
| 501.01 | 142nd St SW (Ward 501) \& 247th Ave SW/ND Hwy 23 | $\star \star \star$ | - |  | - | - | X | x | \$6,150 |
| 504.01 | US Hwy 52 \& Co Rd 19 S (Ward 504) | $\star \star \star$ | - |  | X | X | X | x | \$59,500 |
| 504.02 | US Hwy 52 \& Co Rd 19 S (Ward 504) | $\star \star \star$ | - |  | X | X | X | X | \$59,500 |
|  |  |  | 2 | 0 | 9 | 15 | 22 | 22 | \$2,122,800 |

Detailed Intersection Information


Detailed Intersection Information


Ward County
Rural Intersection Listing

| Int \# | Sys | Num | Intersection Description | Skew | On/Near Curve | Development | $\begin{gathered} \mathrm{RR} \\ \text { Xing } \end{gathered}$ | ADT | Previous STOP (>5mi) | Total Crashes | ADT Cross Product >100,000 | Crash Cost |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.01 | Ward | 1 | 436th Ave NW (Ward 2) \& 6th St NW/415th Ave NW (Ward 1) | Yes | Yes | No | Yes | 803 | No | 0 | Yes | \$ | - |
| 2.01 | Ward | 2 | 590th St NW (Ward 2) \& 436th Ave NW (Ward 2) | Yes | Yes | No | No | 375 | Yes | 0 | No | \$ | - |
| 2.02 | Ward | 2 | US Highway 52 \& 422nd Ave NW/6th St NE (Ward 2) | Yes | No | Yes | No | 3345 | Yes | 0 | Yes | \$ | - |
| 2.03 | Ward | 2 | 436th St NW (Ward 3) \& 422nd Ave NW (Ward 2) | No | No | No | No | 328 | Yes | 0 | No | \$ | - |
| 4.01 | Ward | 4 | US Highway 52 \& 366th Ave NW (Ward 4) | Yes | Yes | No | No | 1908 | No | 0 | No | \$ | - |
| 5.02 | Ward | 5 | US Highway 52 \& 394th St NW (Ward 5) | No | Yes | No | No | 2088 | Yes | 0 | Yes | \$ | - |
| 5.03 | Ward | 5 | US Highway 52/2nd Ave \& Power St/Main St (Ward 5) | Yes | Yes | Yes | No | 1985 | Yes | 0 | Yes | \$ | - |
| 6.01 | Ward | 6 | ND State Highway 28 \& 184th Ave NW/Garfield Ave W (Ward | Yes | Yes | No | No | 860 | No | 0 | No | \$ | - |
| 6.02 | Ward | 6 | ND State Highway 28 \& 198th Ave NW/Washington Ave W (W |  | Yes | No | Yes | 768 | No | 0 | No | \$ | - |
| 6.03 | Ward | 6 | 184th St NW (Ward ) \& 198th Ave NW (Ward 6) | No | Yes | No | No | 255 | Yes | 0 | No | \$ | - |
| 8.01 | Ward | 8 | US Highway 52 \& 198th St NW (Ward 8) | No | Yes | Yes | Yes | 2065 | Yes | 0 | Yes | \$ | - |
| 8.02 | Ward | 8 | Co Rd 15 W (Ward 15) \& 128th Ave NW (Ward 8) | Yes | No | No | No | 115 | Yes | 0 | No | \$ | - |
| 8.03 | Ward | 8 | US Highway 83 \& 128th Ave NW/NE (Ward 8) | No | Yes | Yes | No | 6233 | Yes | 0 | Yes | \$ | - |
| 8.04 | Ward | 8 | 27th St NE (Ward 19) \& 128th Ave NE (Ward 8) | No | No | No | No | 1020 | No | 0 | Yes | \$ | - |
| 8.05 | Ward | 8 | 153rd St NE (Ward 23) \& 128th Ave NE (Ward 8) | No | Yes | No | No | 350 | Yes | 0 | No | \$ | - |
| 9.01 | Ward | 9 | 338th St SW (Ward 9) \& 303rd Ave SW (Ward 22) | No | No | No | No | 320 | No | 0 | No | \$ | - |
| 9.02 | Ward | 9 | 338th St SW (Ward 9) \& ND Highway 23/247th Ave SW | No | No | Yes | No | 3608 | Yes | 1 | Yes | \$ | 12,000 |
| 9.03 | Ward | 9 | 338th St SW (Ward 9) \& 205th Ave SW (Ward 20) | No | No | No | No | 418 | Yes | 0 | No | \$ | - |
| 9.04 | Ward | 9 | 325th St SW (Ward 9) \& 177th Ave SW (Ward 20) | No | No | No | No | 115 | Yes | 0 | No | \$ | - |
| 9.05 | Ward | 9 | 310th St SW (Ward 9) \& 54th Ave SW (Ward 14) | No | No | No | No | 123 | Yes | 0 | No | \$ | - |
| 9.06 | Ward | 9 | 310th St NW (Ward 9) \& 72nd Ave NW (Ward 10) | No | No | No | No | 315 | No | 0 | No | \$ | - |
| 9.07 | Ward | 9 | US Highway 2/86th Ave NW \& 310th St NW (Ward 9) | No | No | No | No | 3720 | No | 0 | Yes | \$ | - |
| 10.01 | Ward | 10 | US Highway 2 \& 72nd St NW (Ward 10) | No | Yes | No | Yes | 7038 | No | 0 | Yes | \$ | - |
| 10.02 | Ward | 10 | Co Rd 15 W (ward 15) \& 46th Ave NW (Ward 10) | Yes | Yes | No | No | 785 | No | 0 | Yes | \$ | - |
| 10.03 | Ward | 10 | US Highway 83 \& 46th Ave NW (Ward 10) | Yes | Yes | No | No | 6813 | No | 2 | Yes | \$ | 148,000 |
| 10.04 | Ward | 10 | US Highway 83/N Broadway \& 46th Ave NE (Ward 10) | No | No | No | No | 9648 | No | 11 | Yes | \$ | 690,000 |
| 10.05 | Ward | 10 | 27th St NE (Ward 19) \& 46th Ave NE (Ward 10) | No | No | No | Yes | 2933 | No | 0 | Yes | \$ | - |
| 10.06 | Ward | 10 | 55th St NE (Ward 10) \& 46th Ave NE (Ward 10) | No | No | No | No | 209 | No | 0 | No | \$ | - |
| 11.01 | Ward | 11 | US Highway 52 \& 184th St NW (Ward 11) | No | Yes | No | Yes | 3590 | No | 1 | Yes | \$ | 12,000 |
| 12.01 | Ward | 12 | 62nd St NW (Ward 17) \& 22nd St SW (Ward 12) | Yes | Yes | No | No | 465 | No | 0 | No | \$ | - |
| 12.02 | Ward | 12 | 27th St NE (Ward 19) \& 4th Ave NE (Ward 12) | No | No | No | No | 8188 | No | 0 | Yes | \$ | - |
| 12.03 | Ward | 12 | 55th St NE (Ward 12) \& 4th Ave NE (Ward 12) | No | No | No | No | 3565 | No | 0 | Yes | \$ | - |
| 12.04 | Ward | 12 | Pleasant Ave N/104th St NE (Ward 12) \& 2nd St NW (Ward 12 | No | No | Yes | Yes | 1624 | No | 0 | Yes | \$ | - |
| 12.05 | Ward | 12 | US Highway 2 \& 104th St SE (Ward 12) | No | Yes | No | No | 3898 | No | 0 | Yes | \$ | - |
| 12.06 | Ward | 12 | 55th St SE (Ward 12) \& 37th Ave SE (Ward 14) | No | No | No | No | 652 | No | 0 | No | \$ | - |
| 12.07 | Ward | 12 | 55th St SE (Ward 12) \& US Highway 2 | No | No | No | No | 5685 | No | 0 | Yes | \$ | - |
| 14.01 | Ward | 14 | 62nd St SW (Ward 14) \& 54th Ave SW (Ward 14) | No | Yes | No | No | 592 | No | 0 | No | \$ | - |
| 14.02 | Ward | 14 | 62nd St SW (Ward 17) \& 37th Ave SW (Ward 14) | No | No | No | No | 947 | No | 0 | Yes | \$ | - |
| 14.03 | Ward | 14 | 16th St SW (Ward 14) \& 37th Ave SW (Ward 14) | No | No | Yes | No | 9575 | No | 0 | Yes | \$ | - |
| 14.04 | Ward | 14 | US Highway 83/S Broadway St \& 54th Ave SW/SE (Ward 14) | No | No | Yes | No | 5335 | No | 1 | Yes | \$ | 12,000 |
| 14.05 | Ward | 14 | 38th St SE (Ward 14) \& 37th Ave SE (Ward 14) | No | No | No | No | 440 | No | 2 | No | \$ | 24,000 |
| 14.06 | Ward | 14 | Co Hwy 19 S (Ward 504) \& 72nd St SE (Ward 14) | No | Yes | No | No | 953 | No | 0 | No | \$ | - |
| 14.07 | Ward | 14 | US Hwy 52 \& 37th Ave SE (Ward 14) | Yes | No | No | No | 3755 | No | 2 | Yes | \$ | 24,000 |
| 14.08 | Ward | 14 | 72nd St SE (Ward 14) \& 37th Ave SE (Ward 14) | No | No | No | No | 289 | No | 0 | No | \$ | - |
| 14.09 | Ward | 14 | 72nd St SE (Ward 14) \& 11th Ave SE | No | No | No | No | 617 | No | 0 | No | \$ | - |
| 15.02 | Ward | 15 | Co Rd 15 W/4th Ave NW (Ward 15) \& 54th St NW (Ward 17) | No | Yes | No | No | 330 | No | 0 | No | \$ | - |
| 16.01 | Ward | 16 | US Hwy 83 \& 93rd Ave SW (Ward 16) | No | No | No | No | 2653 | Yes | 0 | Yes | \$ | - |
| 16.02 | Ward | 16 | US Hwy 52 \& 79th Ave SE (Ward 16) | No | Yes | No | No | 4733 | Yes | 0 | Yes | \$ | - |
| 16.03 | Ward | 16 | Co Rd 19 S (Ward 504) \& 79th Ave SE (Ward 16) | Yes | No | No | No | 420 | No | 0 | No | \$ | - |
| 17.01 | Ward | 17 | US Hwy 2 \& 54th St/62nd St NW (Ward 17) | No | Yes | No | No | 7773 | Yes | 0 | Yes | \$ | - |
| 20.02 | Ward | 20 | 142nd St SW (Ward 501) \& 177th Ave SW (Ward 20) | No | Yes | No | No | 207 | Yes | 0 | No | \$ | - |
| 20.03 | Ward | 20 | US Hwy 83 \& 177th Ave SW (Ward 20) | No | No | Yes | No | 4253 | No | 0 | Yes | \$ | - |
| 22.01 | Ward | 22 | 254th St SW/ND Hwy 28 (Ward 500) \& 303rd Ave SW (Ward 2 | No | No | No | No | 463 | No | 0 | No | \$ | - |
| 22.04 | Ward | 22 | US Hwy 83 \& 303rd Ave SW (Ward 22) | No | Yes | No | No | 2453 | Yes | 0 | No | \$ | - |
| 23.01 | Ward | 23 | 139th St SE (Ward 23) \& ND Hwy 23 | Yes | Yes | No | No | 570 | Yes | 0 | No | \$ | - |
| 23.02 | Ward | 23 | US Hwy 52 \& 139th St SE (Ward 23) | No | No | No | No | 4310 | No | 0 | Yes | \$ | - |
| 23.04 | Ward | 23 | US Hwy 2/Burdick Expy E \& 153rd St NE (Ward 23) | No | No | No | No | 2460 | Yes | 0 | Yes | \$ | - |
| 24.01 | Ward | 24 | 254th St SW/ND Hwy 28 \& 359th Ave SW/ND Hwy 53 (Ward 2 |  | No | No | No | 335 | Yes | 0 | No | \$ | - |
| 24.02 | Ward | 24 | 142nd St SW (Ward 501) \& 359th Ave SW/ND Hwy 53 (Ward | Yes | Yes | No | No | 100 | Yes | 0 | No | \$ | - |
| 24.03 | Ward | 24 | US Hwy 83 \& 359th Ave SW/SE (Ward 24) | No | No | No | No | 2010 | Yes | 0 | Yes | \$ | - |
| 500.01 | Ward | 500 | 254th St SW/ND Hwy 28 (Ward 500) \& 247th Ave SW/ND Hw | No | No | No | No | 2750 | Yes | 0 | Yes | \$ | - |
| 501.01 | Ward | 501 | 142nd St SW (Ward 501) \& 247th Ave SW/ND Hwy 23 | Yes | Yes | No | No | 1293 | Yes | 0 | No | \$ | - |
| 502.01 | Ward | 502 | US Hwy 83 \& 135th Ave SW/SE (Ward 502) | No | No | No | No | 3423 | Yes | 0 | Yes | \$ | - |
| 502.02 | Ward | 502 | US Hwy 52 \& 135th Ave SE (Ward 502) | No | No | No | No | 4438 | No | 2 | Yes | \$ | 24,000 |
| 504.01 | Ward | 504 | US Hwy 52 \& Co Rd 19 S (Ward 504) | No | Yes | No | No | 4368 | No | 3 | Yes | \$ | 160,000 |
| 504.02 | Ward | 504 | US Hwy 52 \& Co Rd 19 S (Ward 504) | No | Yes | Yes | No | 2788 | No | 0 | Yes | \$ | - |

Ward County
Rural Intersection Prioritization

| Rank | Int \# Sys | \# | Intersection Description | Skew | On/Near Curve | Development RR Xing | Previous STOP (>5mi) | Total Crashes | ADT <br> Cross <br> Product <br> $>100,000$ | Priority |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.03 Ward | 5 | US Highway 52/2nd Ave \& Power St/Main St (Ward 5) | $\star$ | $\star$ | $\star$ | * |  | * | $\star \star \star \star \star$ |
| 2 | 8.01 Ward | 8 | US Highway 52 \& 198th St NW (Ward 8) |  | $\star$ | $\star \quad \star$ | $\star$ |  | $\star$ | $\star \star \star \star \star$ |
| 3 | 10.03 Ward | 10 | US Highway 83 \& 46th Ave NW (Ward 10) | $\star$ | $\star$ |  |  | $\star$ | $\star$ | $\star \star \star \star$ |
| 4 | 9.02 Ward | 9 | 338th St SW (Ward 9) \& ND Highway 23/247th Ave SW |  |  | $\star$ | ᄎ | $\star$ | $\star$ | $\star \star \star \star$ |
| 5 | 11.01 Ward | 11 | US Highway 52 \& 184th St NW (Ward 11) |  | $\star$ | $\star$ |  | ᄎ | $\star$ | $\star \star \star \star$ |
| 6 | 1.01 Ward | 1 | 436th Ave NW (Ward 2) \& 6th St NW/415th Ave NW (Ward 1) | $\star$ | $\star$ | $\star$ |  |  | $\star$ | $\star \star \star \star$ |
| 7 | 2.02 Ward | 2 | US Highway 52 \& 422nd Ave NW/6th St NE (Ward 2) | $\star$ |  | $\star$ | $\star$ |  | $\star$ | $\star \star \star \star$ |
| 8 | 8.03 Ward | 8 | US Highway 83 \& 128th Ave NW/NE (Ward 8) |  | $\star$ | $\star$ | $\star$ |  | $\star$ | $\star \star \star \star$ |
| 9 | 504.01 Ward | 504 | US Hwy 52 \& Co Rd 19 S (Ward 504) |  | $\star$ |  |  | $\star$ | $\star$ | $\star \star \star$ |
| 10 | 14.07 Ward | 14 | US Hwy 52 \& 37th Ave SE (Ward 14) | * |  |  |  | $\star$ | * | $\star \star \star$ |
| 11 | 14.04 Ward | 14 | US Highway 83/S Broadway St \& 54th Ave SW/SE (Ward 14) |  |  | $\star$ |  | $\star$ | $\star$ | $\star \star \star$ |
| 12 | 2.01 Ward | 2 | 590th St NW (Ward 2) \& 436th Ave NW (Ward 2) | $\star$ | $\star$ |  | $\star$ |  |  | $\star \star \star$ |
| 13 | 5.02 Ward | 5 | US Highway 52 \& 394th St NW (Ward 5) |  | $\star$ |  | $\star$ |  | $\star$ | $\star \star \star$ |
| 14 | 6.02 Ward | 6 | ND State Highway 28 \& 198th Ave NW/Washington Ave W (Ward 6) | $\star$ | $\star$ | $\star$ |  |  |  | $\star \star \star$ |
| 15 | 10.01 Ward | 10 | US Highway 2 \& 72nd St NW (Ward 10) |  | $\star$ | $\star$ |  |  | $\star$ | $\star \star \star$ |
| 16 | 10.02 Ward | 10 | Co Rd 15 W (ward 15) \& 46th Ave NW (Ward 10) | $\star$ | $\star$ |  |  |  | $\star$ | $\star \star \star$ |
| 17 | 12.04 Ward | 12 | Pleasant Ave N/104th St NE (Ward 12) \& 2nd St NW (Ward 12) |  |  | $\star \quad \star$ |  |  | $\star$ | $\star \star \star$ |
| 18 | 16.02 Ward | 16 | US Hwy 52 \& 79th Ave SE (Ward 16) |  | $\star$ |  | $\star$ |  | $\star$ | $\star \star \star$ |
| 19 | 17.01 Ward | 17 | US Hwy 2 \& 54th St/62nd St NW (Ward 17) |  | $\star$ |  | $\star$ |  | $\star$ | $\star \star \star$ |
| 20 | 23.01 Ward | 23 | 139th St SE (Ward 23) \& ND Hwy 23 | $\star$ | $\star$ |  | $\star$ |  |  | $\star \star \star$ |
| 21 | 24.02 Ward | 24 | 142nd St SW (Ward 501) \& 359th Ave SW/ND Hwy 53 (Ward 24) | $\star$ | $\star$ |  | $\star$ |  |  | $\star \star \star$ |
| 22 | 501.01 Ward | 501 | 142nd St SW (Ward 501) \& 247th Ave SW/ND Hwy 23 | $\star$ | $\star$ |  | $\star$ |  |  | $\star \star \star$ |
| 23 | 504.02 Ward | 504 | US Hwy 52 \& Co Rd 19 S (Ward 504) |  | $\star$ | $\star$ |  |  | $\star$ | $\star \star \star$ |
| 24 | 10.04 Ward | 10 | US Highway 83/N Broadway \& 46th Ave NE (Ward 10) |  |  |  |  | $\star$ | $\star$ | $\star \star$ |
| 25 | 502.02 Ward | 502 | US Hwy 52 \& 135th Ave SE (Ward 502) |  |  |  |  | ᄎ | * | $\star \star$ |
| 26 | 4.01 Ward | 4 | US Highway 52 \& 366th Ave NW (Ward 4) | $\star$ | $\star$ |  |  |  |  | $\star \star$ |
| 27 | 6.01 Ward | 6 | ND State Highway 28 \& 184th Ave NW/Garfield Ave W (Ward 6) | $\star$ | $\star$ |  |  |  |  | $\star \star$ |
| 28 | 6.03 Ward | 6 | 184th St NW (Ward ) \& 198th Ave NW (Ward 6) |  | $\star$ |  | $\star$ |  |  | $\star \star$ |
| 29 | 8.02 Ward | 8 | Co Rd 15 W (Ward 15) \& 128th Ave NW (Ward 8) | $\star$ |  |  | $\star$ |  |  | $\star$ * |
| 30 | 8.05 Ward | 8 | 153rd St NE (Ward 23) \& 128th Ave NE (Ward 8) |  | $\star$ |  | $\star$ |  |  | $\star$ * |
| 31 | 10.05 Ward | 10 | 27th St NE (Ward 19) \& 46th Ave NE (Ward 10) |  |  | $\star$ |  |  | $\star$ | $\star \star$ |
| 32 | 12.01 Ward | 12 | 62nd St NW (Ward 17) \& 22nd St SW (Ward 12) | $\star$ | $\star$ |  |  |  |  | $\star$ * |
| 33 | 12.05 Ward | 12 | US Highway 2 \& 104th St SE (Ward 12) |  | $\star$ |  |  |  | $\star$ | $\star$ * |
| 34 | 14.03 Ward | 14 | 16th St SW (Ward 14) \& 37th Ave SW (Ward 14) |  |  | $\star$ |  |  | $\star$ | $\star \star$ |
| 35 | 16.01 Ward | 16 | US Hwy 83 \& 93rd Ave SW (Ward 16) |  |  |  | $\star$ |  | $\star$ | $\star \star$ |
| 36 | 20.02 Ward | 20 | 142nd St SW (Ward 501) \& 177 th Ave SW (Ward 20) |  | $\star$ |  | $\star$ |  |  | $\star \star$ |
| 37 | 20.03 Ward | 20 | US Hwy 83 \& 177th Ave SW (Ward 20) |  |  | $\star$ |  |  | $\star$ | $\star \star$ |
| 38 | 22.04 Ward | 22 | US Hwy 83 \& 303rd Ave SW (Ward 22) |  | $\star$ |  | $\star$ |  |  | $\star \star$ |
| 39 | 23.04 Ward | 23 | US Hwy 2/Burdick Expy E \& 153rd St NE (Ward 23) |  |  |  | $\star$ |  | $\star$ | $\star \star$ |
| 40 | 24.03 Ward | 24 | US Hwy 83 \& 359th Ave SW/SE (Ward 24) |  |  |  | $\star$ |  | * | $\star \star$ |
| 41 | 500.01 Ward | 500 | 254th St SW/ND Hwy 28 (Ward 500) \& 247th Ave SW/ND Hwy 23 |  |  |  | $\star$ |  | $\star$ | $\star \star$ |
| 42 | 502.01 Ward | 502 | US Hwy 83 \& 135th Ave SW/SE (Ward 502) |  |  |  | $\star$ |  | $\star$ | $\star \star$ |
| 43 | 14.05 Ward | 14 | 38th St SE (Ward 14) \& 37th Ave SE (Ward 14) |  |  |  |  | $\star$ |  | $\star$ |
| 44 | 2.03 Ward | 2 | 436th St NW (Ward 3) \& 422nd Ave NW (Ward 2) |  |  |  | $\star$ |  |  | $\star$ |
| 45 | 8.04 Ward | 8 | 27th St NE (Ward 19) \& 128th Ave NE (Ward 8) |  |  |  |  |  | $\star$ | $\star$ |
| 46 | 9.03 Ward | 9 | 338th St SW (Ward 9) \& 205th Ave SW (Ward 20) |  |  |  | $\star$ |  |  | $\star$ |
| 47 | 9.04 Ward | 9 | 325th St SW (Ward 9) \& 177th Ave SW (Ward 20) |  |  |  | $\star$ |  |  | $\star$ |
| 48 | 9.05 Ward | 9 | 310th St SW (Ward 9) \& 54th Ave SW (Ward 14) |  |  |  | $\star$ |  |  | $\star$ |
| 49 | 9.07 Ward | 9 | US Highway 2/86th Ave NW \& 310th St NW (Ward 9) |  |  |  |  |  | $\star$ | $\star$ |
| 50 | 12.02 Ward | 12 | 27th St NE (Ward 19) \& 4th Ave NE (Ward 12) |  |  |  |  |  | $\star$ | $\star$ |
| 51 | 12.03 Ward | 12 | 55th St NE (Ward 12) \& 4th Ave NE (Ward 12) |  |  |  |  |  | $\star$ | $\star$ |
| 52 | 12.07 Ward | 12 | 55th St SE (Ward 12) \& US Highway 2 |  |  |  |  |  | $\star$ | $\star$ |
| 53 | 14.01 Ward | 14 | 62nd St SW (Ward 14) \& 54th Ave SW (Ward 14) |  | $\star$ |  |  |  |  | $\star$ |
| 54 | 14.02 Ward | 14 | 62nd St SW (Ward 17) \& 37th Ave SW (Ward 14) |  |  |  |  |  | $\star$ | $\star$ |
| 55 | 14.06 Ward | 14 | Co Hwy 19 S (Ward 504) \& 72nd St SE (Ward 14) |  | $\star$ |  |  |  |  | ᄎ |
| 56 | 15.02 Ward | 15 | Co Rd 15 W/4th Ave NW (Ward 15) \& 54th St NW (Ward 17) |  | $\star$ |  |  |  |  | $\star$ |
| 57 | 16.03 Ward | 16 | Co Rd 19 S (Ward 504) \& 79th Ave SE (Ward 16) | $\star$ |  |  |  |  |  | $\star$ |
| 58 | 23.02 Ward | 23 | US Hwy 52 \& 139th St SE (Ward 23) |  |  |  |  |  | * | $\star$ |
| 59 | 24.01 Ward | 24 | 254th St SW/ND Hwy 28 \& 359th Ave SW/ND Hwy 53 (Ward 24) |  |  |  | $\star$ |  |  | $\star$ |
| 60 | 9.01 Ward | 9 | 338th St SW (Ward 9) \& 303rd Ave SW (Ward 22) |  |  |  |  |  |  |  |
| 61 | 9.06 Ward | 9 | 310th St NW (Ward 9) \& 72nd Ave NW (Ward 10) |  |  |  |  |  |  |  |
| 62 | 10.06 Ward | 10 | 55th St NE (Ward 10) \& 46th Ave NE (Ward 10) |  |  |  |  |  |  |  |
| 63 | 12.06 Ward | 12 | 55th St SE (Ward 12) \& 37th Ave SE (Ward 14) |  |  |  |  |  |  |  |
| 64 | 14.08 Ward | 14 | 72nd St SE (Ward 14) \& 37th Ave SE (Ward 14) |  |  |  |  |  |  |  |
| 65 | 14.09 Ward | 14 | 72nd St SE (Ward 14) \& 11th Ave SE |  |  |  |  |  |  |  |
| 66 | 22.01 Ward | 22 | 254th St SW/ND Hwy 28 (Ward 500) \& 303rd Ave SW (Ward 22) |  |  |  |  |  |  |  |


| Totals |  |  |
| ---: | :---: | :---: |
|  | $\#$ | $\%$ |
| $\star \star \star \star \star \star \star$ | 0 | $0 \%$ |
| $\star \star \star \star \star \star$ | 0 | $0 \%$ |
| $\star \star \star \star \star$ | 2 | $3 \%$ |
| $\star \star \star \star$ | 6 | $9 \%$ |
| $\star \star \star$ | 15 | $23 \%$ |
| $\star \star$ | 19 | $29 \%$ |
| $\star$ | 17 | $26 \%$ |
| - | 7 | $11 \%$ |
|  | 66 | $100 \%$ |

$\begin{array}{cccccccc}\text { Total Stars -- } & 16 & 29 & 10 & 7 & 27 & 9 & 36 \\ \text { Gets Star -- } & 24 \% & 44 \% & 15 \% & 11 \% & 41 \% & 14 \% & 55 \%\end{array}$
$\begin{array}{rr}\% \text { That Gets Star -- } & 24 \% \\ & \text { Stars }\end{array}$

|  | Stars |
| :---: | :---: |
| Skew - | If intersection is skewed at an angle of 15 degrees or greater. |
| On/Near Curve - | - If intersection is on or within 1,000 feet of curve. |
| Development - | If intersection aerial shows a commercial development with access near intersection. |
| RR Xing - | - If intersection has a railroad crossing on any approach within 500 feet. |
| Previous STOP (>5 mi) - | If vehicles approaching the stop control have not had a previous stop along the roadway |
| Total Crashes - | If intersection has at least 1 crash. |
| Ratio (Min/Maj) | intersection has an ADT ratio in the range of 0.2 to 0.8 . |
























| Corridor ID | Local Street Name | Start | End | Length | Risk Ranking | 4" Edge Line | Shoulder Rumble Strip | Edge Line Rumble Strip | 6" Edge Lines | Center Line R1 | Project Cost (\$) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.01 | 534th St | State Route 50 | 436th Ave |  | $\star \star \star \star$ | 0.0 | 0.0 | 8.8 | 8.8 | 0.0 | \$30,800 |
| 2.02 | 436th Ave | 590th ST | Ward 11 |  | $\star \star \star \star$ | 0.0 | 5.8 | 0.0 | 5.8 | 0.0 | \$17,400 |
| 5.03 | Main St | US Hwy 52 | Ward 7 |  | $\star \star \star$ | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | \$1,170 |
| 8.01 | 128th Ave | US Hwy 52 | US Hwy 83 |  | $\star \star \star$ | 0.0 | 12.9 | 0.0 | 12.9 | 0.0 | \$38,700 |
| 9.03 | 310th St | Ward 20 | Ward 14 |  | $\star \star \star$ | 0.0 | 11.5 | 0.0 | 11.5 | 0.0 | \$44,700 |
| 10.02 | 19th Ave | Granly St | US Hwy 2 |  | $\star \star \star \star \star$ | 0.0 | 7.6 | 0.0 | 7.6 | 0.0 | \$22,800 |
| 12.03 | 4th Ave | 55th St | US Hwy 2 |  | $\star \star \star \star$ | 0.0 | 4.1 | 0.0 | 4.1 | 4.1 | \$24,600 |
| 14.02 | 54th Ave | Ward 9 | 62nd St |  | $\star \star \star$ | 0.0 | 0.0 | 17.8 | 17.8 | 0.0 | \$62,300 |
| 14.04 | 54th Ave | US Hwy 83 | 1 mile east of 13th St |  | $\star \star \star$ | 0.0 | 0.0 | 2.1 | 2.1 | 0.0 | \$7,350 |
| 15.02 | 57th St | US Hwy 83 | Ward 17 |  | $\star \star \star \star$ | 0.0 | 0.0 | 2.2 | 2.2 | 2.2 | \$14,300 |
| 15.03 | County Road 15 W | Ward 17 | Ward 10 |  | $\star \star \star$ | 0.0 | 0.0 | 2.8 | 2.8 | 2.8 | \$18,200 |
| 15.04 | County Road 15 W | Ward 10 | 1 mile South of 86th St |  | $\star \star \star \star \star$ | 0.0 | 0.0 | 2.2 | 2.2 | 0.0 | \$7,700 |
| 17.02 | 54th St | US Hwy 2 | Ward 15 |  | $\star \star \star$ | 0.0 | 0.0 | 1.3 | 1.3 | 1.3 | \$8,450 |
| 23.04 | 153rd St | US Hwy 2 | 66th St |  | $\star \star \star \star$ | 0.0 | 0.0 | 9.1 | 9.1 | 0.0 | \$31,850 |
| 24.02 | 359th Ave | 142nd St | US Hwy 83 |  | $\star \star \star$ | 0.0 | 0.0 | 9.7 | 9.7 | 0.0 | \$33,950 |
|  |  |  |  |  |  | 0.0 | 41.9 | 56.0 | 99.7 | 10.4 | \$ 364,270 |

Detailed Corridor Information

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Ward County Corridors} \& \multicolumn{11}{|c|}{\[
\begin{aligned}
\& \geq 45 \mathrm{MPH} \text { OR } \leq \\
\& 40 \mathrm{MPH}
\end{aligned}
\]} \& \multicolumn{2}{|r|}{Access} \& \multirow[b]{2}{*}{Weighted ADT} \\
\hline Corridor \& Route \& \# \& Local Name \& Start \& End \& Road Type \& Facility \& Speed Limit \(\begin{gathered}\text { Ana } \\ \text { lyst } \\ \text { Not }\end{gathered}\) \& Length \& Edge Risk Assesment \& ERA 2 \& Lane Widh \& \[
\begin{aligned}
\& \text { Paved Shoulder } \\
\& \text { Width }
\end{aligned}
\] \& Gravel Shoulder
Width \& Curb \& Guter? \& Shoulder Type \& Tot \& Access/ Mile \& \\
\hline 1.01 \& Ward 1 \& 1 \& 534th St \& Intersection with state route 50 \& Intersection with 336 th Ave \& Rural Paved \& 2-Lane \& High \& \({ }^{8.84}\) \& 1 \& \& \({ }^{12}\) \& 0 \& 0 \& 0 \& None \& 72 \& 8.1 \& 309 \\
\hline 2.01 \& Ward 2 \& 2 \& 436th Ave \& Intersection with 7 2nd Ave \& Intersection with 450 thAve \& Rural Paved \& 2-Lane \& High \& 1.98 \& 1 \& \& \({ }^{12}\) \& \({ }_{2}\) \& 0 \& 0 \& None
Paved \& 14 \& 7.1 \& 145 \\
\hline 2.02
2.03 \& Ward 2
Ward 2 \& 2 \& \({ }_{6}^{436 \mathrm{th} \text { Ave }}\) \& Intersection with 590 Sth ST
Intersection with Ward 1 \& Intersection with Ward 11
Intersection with Us Hwy 52 \& Rural Paved
Rural Paved \& \({ }_{\text {2-Lane }}^{\text {2-Lane }}\) \& \({ }_{\text {High }}^{\substack{\text { High } \\ \text { Low }}}\) \& 5.79
1.08 \& 1 \& Drop offs \& objects \& 12
12 \& \({ }_{0}^{2}\) \& \({ }_{4}\) \& 0 \& Paved
Gravel \& 34
51
51 \& 5.9
47.2 \& 395
1230 \\
\hline 2.04 \& Ward 2 \& 2 \& 422nd Ave \& Intersection with Us Hwy 52 \& Intersection with Ward 3 \& Rural Paved \& 2-Lane \& High \& 4.49 \& 1 \& \& 12 \& 2 \& 0 \& 0 \& Paved \& 39 \& 8.7 \& 430 \\
\hline 2.05 \& Ward 2 \& 2 \& 422nd Ave \& Intersection with Ward 3 \& Intersection with 52nd Ave \& Rural Paved \& 2-Lane \& High \& 4.97 \& 1 \& \& 12 \& 2 \& 0 \& 0 \& Paved \& 31 \& 6.2 \& 20 \\
\hline \({ }^{3.01}\) \& Ward 3 \& 3 \& \({ }^{436 \mathrm{~h} \text { St }}\) \& Intersection with Ward 4 \& Intersection with Ward 2 \& Rural CMC Gravel \& \& \& 4.01
1.99 \& \& \& \& \& \& \& None
None \& 0 \& 0.0 \& 25
70 \\
\hline 3.02 \& Ward \({ }^{\text {Ward }}\) \& \({ }_{4}^{3}\) \& \({ }_{\text {a }}^{46 \mathrm{thth} \text { St }}\) \& \& \& Rural CMC Cravel
Rural CMC Gravel \& \& \& 1.99
5.07 \& \& \& \& \& \& \& None
None \& \& 0.0
0.0 \& 70
50 \\
\hline 4.01
5.01 \& Ward 4 \& \({ }_{5}^{4}\) \& \(\underbrace{\text { 394h St }}_{\text {36th Ave }}\) \& Intersection with US Hwy 52 \& Intersection with 5 2nd Ave \& Rural CMC Gravel \& \& \& 5.07
4.00 \& \& \& \& \& \& \& None
None \& 0 \& 0.0
0.0 \& 50
62 \\
\hline 5.01
5.02 \& Ward 5 \& 5 \& \({ }_{3944 \mathrm{~h}}\) St \& Intersection with 240 tht Ave \& Intersection with US Hwy 52 \& Rural Paved \& 2-Lane \& High \& 1.95 \& 2 \& drop off \& 12 \& 2 \& 0 \& 0 \& Paved \& 7 \& 3.6 \& 115 \\
\hline 5.03 \& Ward 5 \& 5 \& Main St \& Intersection with US Hwy 52 \& Intersection with Ward 7 \& Rural Paved \& 2-Lane \& High \& 1.76 \& 2 \& water, drop offs \& 12 \& 2 \& 0 \& 0 \& Paved \& 20 \& 11.4 \& 80 \\
\hline 6.01 \& Ward 6 \& 6 \& 184th Ave \& Intersection with Ward 5 \& 1 mile to city of carpio \& Rural CMC Gravel \& \& \& 7.25 \& \& \& \& \& \& \& None \& 0 \& 0.0 \& 55 \\
\hline 6.02 \& Ward 6 \& 6 \& 184 th Ave \& 1 mile to city of carpio \& Intersection with state route 28 \& Rural Paved \& 2-Lane \& High \& 1.77 \& 1 \& \& \({ }^{12}\) \& \({ }^{2}\) \& 0 \& 0 \& Paved \& 9 \& 5.1 \& 60 \\
\hline \({ }^{6.03}\) \& Ward 6 \& 7 \& 198th Ave \& Intersection with state rout 28 \& Intersection with Reneville 6 \& Rural Paved \& 2-Lane \& Low \& 7.06 \& 2 \& water, drop offis \& 12 \& 0 \& 0 \& 0 \& None \& \({ }^{43}\) \& 6.1 \& 218 \\
\hline 7.01
8.01 \& \begin{tabular}{l} 
Ward 7 \\
Ward \\
\hline
\end{tabular} \& 7 \& \({ }_{\text {2 }}^{\text {282nd Ave }}\) \& Intersection with Ward 5
Intersection with Us Hwy 52 \& Intersection with 5 2nd Ave
Itersection with US Hwy 83 \& Rural CMC Gravel \& 2-Lane \& High \& 0.49
12.88 \& 2 \& water, drop offs \& 12 \& 2 \& 0 \& 0 \& None
Paved \& \({ }_{68}\) \& 0.0
5.3 \& 230
174 \\
\hline 8.02 \& Ward 8 \& \& 128 th Ave \& Intersection with US Hwy 83 \& Intersection with Ward 23 \& Rural Paved \& 2-Lane \& High \& 10.87 \& 1 \& \& 12 \& 2 \& 0 \& 0 \& Paved \& 54 \& 5.0 \& 617 \\
\hline \({ }_{9} 9.01\) \& Ward 9 \& 9 \& 338 St \& Intersection with 373 rd Ave \& Intersection with state route 23 \& Rural Paved \& 2-Lane \& High \& 8.00 \& 1 \& \& 12 \& 0 \& 0 \& 0 \& None \& 50 \& 6.2 \& 288 \\
\hline 9.02 \& Ward 9 \& 9 \& 338 St \& Intersection with state route 23 \& Intersection with Ward 20 \& Rural Paved \& 2-Lane \& High \& 3.35 \& 1 \& \& \({ }^{12}\) \& 2 \& 0 \& 0 \& Paved \& 20 \& 6.0 \& 675 \\
\hline 9.03 \& Ward 9 \& 9 \& \({ }^{310 \mathrm{th} \mathrm{St}}\) \& Intersection with Ward 20 \& Intersection with Ward 14 \& Rural Paved \& \({ }^{2-L \text { Lane }}\) \& High \& 11.55 \& 1 \& \& 12 \& \({ }_{4}\) \& 0 \& 0 \& Paved \& 51 \& 4.4 \& 157 \\
\hline 9.04 \& Ward 9 \& 10 \& 310th St \& Intersection with Ward 14 \& Intersection with US Hwy 2 \& Rural Paved \& 2-Lane \& High \& 10.00 \& 1 \& \& \({ }^{12}\) \& 4 \& 0 \& 0 \& Paved \& 71 \& 7.1 \& \({ }^{121}\) \\
\hline 10.01
10.02 \& Ward 10
Ward 10 \& 10
10 \& 184th St
19th Ave \& Intersection with Ward 9 9 \& Interssection with Granly \({ }^{\text {St }}\) (
Inersecion with Us Hwy \& Rural Paved
Rural Paved \& \({ }_{\text {2-LLane }}^{\text {2-Lane }}\) \& \(\underset{\substack{\text { High } \\ \text { High }}}{ }\) \& 10.74
7.60 \& 1 \& \& 12
12 \& 2 \& 0 \& \({ }_{0}\) \& Paved
Paved \& 56
75 \& 5.9
9.9 \& 263
671 \\
\hline 10.02
10.03 \& Ward 10 \& 10 \& 19th Ave
60 th St \& Intersection with Granly \({ }_{\text {St }}^{\text {Intersetion with Ward } 15}\) \& Intersection with Us HHy 2 \& Rural Paved
Rural Paved \& \({ }_{\text {2-Lane }}\) \& \(\underset{\text { High }}{\text { High }}\) \& 7.80
4.82 \& 1 \& \& \({ }_{12}^{12}\) \& 2 \& 0 \& \({ }_{0}^{0}\) \& \({ }^{\text {Paved }}\) Paved \& \({ }_{29} 9\) \& 6.9 \& \({ }_{457}^{671}\) \\
\hline 10.04 \& Ward 10 A \& 10 A \& 46 th Ave \& Intersection with Us Huy 83 \& Intersection with Ward 19 \& Rural Paved \& 2-Lane \& High \& 1.98 \& 1 \& \& 12 \& 12 \& 0 \& 0 \& Paved \& 22 \& 11.1 \& 1793 \\
\hline 10.05 \& No designation \& \& 46 th Ave \& Intersection with Ward 19 \& Intersection with Ward 12 \& Rural CMC Gravel \& \& \& 2.00 \& \& \& \& \& \& \& None \& 0 \& 0.0 \& 170 \\
\hline 11.01 \& Ward 11 \& 11 \& 184th St \& Intersection with US Hwy 52 \& Intersection with Ward 6 \& Rural Paved \& 2-Lane \& High \& 4.89 \& 1 \& \& \({ }^{12}\) \& 0 \& 0 \& 0 \& None \& \({ }^{26}\) \& 5.3 \& 1680 \\
\hline 12.01
1202 \& Ward 12 \& \({ }_{12}^{12}\) \& \({ }_{\text {2nd }}^{22 \mathrm{ndt}}\) \& 1 mile west of Ward 17 , \& Intersection with Ward 17 \& Rural Paved
Rural Paved \& \({ }_{\text {che }}^{\text {2-Lane }}\) \& Low \& \({ }_{201}^{0.91}\) \& \({ }_{1}\) \& drop offs \& \({ }_{12}^{12}\) \& \({ }_{0}^{4}\) \& \({ }_{2}\) \& 0 \& Paved
Gravel \& \begin{tabular}{|}
23 \\
16
\end{tabular} \& 25.4
8.0 \& 260
3190 \\
\hline 12.02
12.03
120 \& Ward 12
Ward 12 \& 12
12 \&  \& Intersection with Ward 19 \& Intersection with 55th 5 St \& Rural Paved
Rural Paved \& \({ }_{\text {2-Lane }}^{\text {2-Lane }}\) \& \(\underset{\text { High }}{\text { High }}\) \& \({ }_{4.09}^{2.01}\) \& 1 \& \& 12
12 \& 0 \& \({ }_{0}^{2}\) \& \({ }_{0}\) \& Gravel
Paved \& 16
58 \& 8.0
14.2 \& 3190
1204 \\
\hline 12.04 \& Ward 12A \& 12 \& 55th St \& Intersection with Ward 14 \& Intersection with US Hwy 2 \& Rural Paved \& 2-Lane \& Low \& 2.24 \& 1 \& \& 12 \& 0 \& 0 \& 1 \& None \& 41 \& 18.3 \& 881 \\
\hline 12.05 \& Ward 12A \& 12 \& 55th St \& Intersection with US Hwy 2 \& Intersection with 4th Ave \& Rural Paved \& 2-Lane \& Low \& 0.76 \& 2 \& no shoulder \& 12 \& 0 \& 0 \& 0 \& None \& 24 \& 31.8 \& 2400 \\
\hline 12.06 \& No designation \& \& 55t St \& Intersection with 4th Ave \& Intersection with 46th Ave \& Rural CMC Gravel \& \& \& 3.03 \& \& \& \& \& \& \& None \& \& 0.0 \& 115 \\
\hline 14.01
14.02 \& Ward 14
Ward 14 \& 14 \& \({ }_{\text {54th Ave }}\) \& Intersection with 408thst \& Intersection with Ward 9 \& Rural CMC Gravel
Rural Paved \& 2-Lane \& High \& 6.03
17.84 \& \& \& 12 \& \& \& \& None
Paved \& \({ }_{77}\) \& \({ }_{4}^{0.0}\) \& 65
210 \\
\hline \begin{tabular}{l}
14.02 \\
14.03 \\
\hline
\end{tabular} \& Ward 14 \& 14 \& \({ }^{54 \mathrm{hth} \text { Ave }}\) \& Intersection wih ward 1 9 \& Intersection with 6 2nd 5 St \({ }^{\text {a }}\) \& Rural Paved
Rural Paved \& \({ }_{\text {2-Lane }}^{\text {2-Lane }}\) \& How \& +1.84 \& 1 \& \& \({ }_{12}^{12}\) \& \({ }_{2}^{2}\) \& 0 \& \({ }_{0}\) \& \({ }^{\text {Paved }}\) Paved \& 55 \& \({ }_{9.5}^{4.3}\) \& 21010
1010 \\
\hline 14.04 \& Ward 14 \& 14 \& 54 h Ave \& Intersection with US Hwy 83 \& 1 mile east of 13 th St \& Rural Paved \& 2-Lane \& High \& 2.13 \& 1 \& \& 12 \& 1 \& 1 \& 0 \& Composite \& 35 \& 16.4 \& 548 \\
\hline 14.05 \& Ward 14A \& 14 \& 38th St \& 1 mile east of 13 3t St \& Intersection with 377th Ave \& Rural Paved \& \({ }^{2-L \text { Lane }}\) \& Low \& 1.27 \& 1 \& \& \({ }^{12}\) \& \({ }_{2}\) \& 0 \& 0 \& Paved \& \({ }^{33}\) \& 25.9 \& 300 \\
\hline 14.06
14.07 \& Ward 14 \& 14 \&  \& Intersection with Ward 14A \& Intersection with 7 2nd Ave Ave \& Rural Paved
Rural paved \& \({ }_{\text {cher }}^{\text {2-Lane }}\) \& Low \& 2.19
201 \& 2 \& small clear zone \& 12
12 \& 2 \& 0 \& 0 \& Paved
Paved \& 43
49 \& 19.6
24.3 \& \({ }_{0}^{408}\) \\
\hline 14.07
15.02 \& Ward 14
Ward 15 \& 14
15 \&  \&  \& Intersection with 1 14h Ave \& Rural Paved
Rural Paved \& \({ }_{\text {2-Lane }}^{\text {2-Lane }}\) \& \(\underset{\text { Low }}{\text { High }}\) \& \({ }_{2.23}^{2.01}\) \& 1 \& flooding \& 12
12 \& 2 \& \({ }_{2}\) \& 0 \& \({ }_{\text {Premed }}^{\text {Paved }}\) Composite \& 49
24 \& 24.3
10.8 \& \({ }_{4010}^{0}\) \\
\hline 15.03 \& Ward 15 \& 15 \& County Road 15 W \& Intersection with Ward 17 \& Intersection with Ward 10 \& Rural Paved \& 2-Lane \& High \& 2.76 \& 2 \& small clear zone \& 12 \& 6 \& 0 \& 0 \& Paved \& 33 \& 12.0 \& 2510 \\
\hline 15.04 \& Ward 15 \& 15 \& County Road 15 W \& Intersection with Ward 10 \& 1 mile South of 86th St \& Rural Paved \& 2-Lane \& High \& 2.15 \& 1 \& \& 12 \& 2 \& 0 \& 0 \& Paved \& 33 \& 15.3 \& 520 \\
\hline 15.05 \& Ward 15 \& 15 \& County Road 15 W \& 1 mile South of 86th St \& Intersection with Ward 8 \& Rural CMC Gravel \& \& \& 5.49 \& \& \& \& \& \& \& None \& 0 \& 0.0 \& 70 \\
\hline 16.01
16.02 \& Ward 16 \& 16
16 \& 963rd Ave \& Intersection with US HWy 83 \& Intersection with US HMy 52 \& Rural CMC Gravel
Rural Paved \& \& \& 6.79
1.10 \& \& \& \& \& \& \& None \& 0 \& 0.0 \& 70 \\
\hline 16.02
16.03 \& Ward 16
Ward 16 \& 16
16 \& 79th Ave
79th Ave \& (Intersection with US HWy 52 \& Intersection with 9 97h St \& Rural Paved
Rural CMC Gravel \& 2-Lane \& Low \& 1.10
6.10 \& 2 \& flooding \& 12 \& 2 \& 0 \& 0 \& Paved
None \& 0 \& 0.0
0.0 \& 210
138 \\
\hline 17.01 \& Ward 17 \& 17 \& 62nd St \& Intersection with Ward 14 \& Intersection with US Hwy 2 \& Rural Paved \& 2-Lane \& Low \& 3.10 \& 1 \& \& 12 \& 4 \& 0 \& \& Paved \& 24 \& 7.8 \& 315 \\
\hline 17.02 \& Ward 17 \& 17 \& 54th St \& Intersection with US Hwy 2 \& Intersection with Ward 15 \& \({ }^{\text {Rural Paved }}\) \& \({ }^{2}\) 2-Lane \& High \& 1.28 \& 1 \& \& \({ }^{12}\) \& 4 \& 0 \& 0 \& Paved \& \({ }^{18}\) \& 14.0 \& \({ }_{1575}\) \\
\hline 19.01 \& Ward 19 \& 19 \& \({ }^{27 \text { Th St }}\) \& Intersection with Ward 12 \& Intersection with Ward 8 \& Rural Paved \& 2-Lane \& High \& 9.09

230 \& 1 \& \& 12 \& 2 \& 0 \& 0 \& Paved \& 50 \& 5.5 \& ${ }^{1279}$ <br>
\hline 20.01
20.02 \& Ward 20
Ward 20 \& ${ }_{20}^{20}$ \& 205th Ave \& Intersection with 380th St \& Intersection with Ward 12 2 \& Rural CMC Gravel
Rural CMC Gravel \& \& \& 2.30
12.82 \& \& \& \& \& \& \& None
None \& 0 \& 0.0
0.0 \& 80
43 <br>
\hline 20.03 \& Ward 20 \& 20 \& 117 th Ave \& Intersection with 142 nd St \& Intersection with Us Hwy 83 \& Rural Paved \& 2-Lane \& High \& ${ }_{10.03}$ \& 1 \& \& 12 \& 2 \& 0 \& 0 \& Paved \& 45 \& 4.5 \& 302 <br>
\hline 22.01 \& Ward 22 \& 22 \& 303rd Ave \& Intersection with Ward 9 \& Intersection with Corona St \& Rural Paved \& 2-Lane \& High \& 6.36 \& 1 \& \& 12 \& 2 \& 0 \& 0 \& Paved \& 48 \& 7.5 \& 163 <br>
\hline 22.02 \& Ward 22 \& 22 \& 303rd Ave \& Intersection with Corona St \& Intersection with 142 nd St \& Rural CMC Gravel \& \& \& 7.58 \& \& \& \& \& \& \& None \& 0 \& 0.0 \& 65 <br>
\hline 22.03
23.01 \& Ward 22
Ward 23 \& ${ }_{23}^{22}$ \& ${ }_{\text {3 }}^{\text {303rd Ave }}$ \& Intersection with 142 d St ( \& Intersection with US Hwy 83
Intersecion with state route 23 \& Rural CMC Gravel

Rural Paved \& \& \& | 10.25 |
| :--- |
| 9.30 | \& \& \& \& \& \& \& None

Paved \& ${ }_{46}$ \& | 0.0 |
| :--- |
| 8 | \& $\begin{array}{r}35 \\ 141 \\ \hline\end{array}$ <br>

\hline 23.01
23.02 \& Ward 23
Ward 23 \& 23
23 \& ${ }_{2}^{215 s t A v e}$ \& Intersection with 7 73rd Ave \& Intersection with state route 23
Intersection with US Hwy 53 \& Rural Paved
Rural Paved \& ${ }_{\text {2-Lane }}^{\text {2-Lane }}$ \& $\underset{\substack{\text { High } \\ \text { High }}}{ }$ \& 9.300
7.67 \& 1 \& \& 12
12 \& ${ }_{2}^{2}$ \& ${ }_{0}^{0}$ \& 0 \& ${ }_{\substack{\text { Paved } \\ \text { Paved }}}$ \& ${ }_{31}^{46}$ \& 4.9
4.0 \& 141
362 <br>
\hline ${ }_{23.03}$ \& Ward 23 \& 23 \& 153 rd St \& Quarter mile north of Dakota Ave \& Intersection with US Hwy 2 \& Rural Paved \& \& Rural CMC Gravel, r \& 10.53 \& \& \& \& \& \& \& None \& 0 \& 0.0 \& 101 <br>
\hline 23.04 \& Ward 23 \& ${ }^{23}$ \& 153rd St \& Intersection with US Hwy 2 \& Intersection with 66th St \& Rural Paved \& 2-Lane \& High \& 9.09 \& 1 \& \& ${ }^{12}$ \& ${ }^{2}$ \& 0 \& 0 \& Paved \& ${ }_{6} 6$ \& 6.9 \& 310 <br>
\hline 24.01
24.02 \& Ward 24 \& ${ }_{24}^{24}$ \& 359th Ave \& Intersection with state route 28 \& Intersection with $142 n$ dt St \& Rural Paved
Rural Paved \& ${ }_{\text {2-Lane }}^{\text {2-Lane }}$ \& $\underset{\substack{\text { High } \\ \text { High }}}{ }$ \& 8.27
970 \& 1 \& \& ${ }_{12}^{12}$ \& ${ }_{2}$ \& ${ }_{0}$ \& $\bigcirc$ \& Praved \& ${ }_{61}^{47}$ \& ${ }_{6.3}^{5.7}$ \& <br>
\hline 24.02
500.01 \& Ward 24
No designation \& 24 \& ${ }_{\text {3 }}^{\text {3594t Ave }}$ \&  \& Intersection with US Hyy 83
Intersection with Ward 20 \& Rural Paved
Rural CMC Gravel \& 2-Lane \& \& 9.70
5.23 \& ${ }^{2}$ \& flooding \& 12 \& 2 \& 0 \& 0 \& Paved
None \& ${ }_{0}^{61}$ \& 6.3
0.0 \& 283
40 <br>
\hline 501.01 \& No designation \& \& Main St \& Intersection with 373 rd Ave \& Intersection with Ward 24 \& Rural CMC Gravel \& \& \& 1.06 \& \& \& \& \& \& \& None \& \& 0.0 \& 61 <br>
\hline 501.02
501.03 \& No designation
No designation \& NA \& 142nd St
142nd St \& Intersection with Ward 24 \& Intersection with State route 22
Intersecion with Ward 22 \& Rural CMC Gravel
Rural Paved \& 2-Lane \& High \& 8.45
5.06 \& 2 \& small clear zone \& 12 \& 2 \& 0 \& 0 \& None
Paved \& ${ }_{21}$ \& 0.0
4.1 \& 54
85 <br>
\hline 502.01 \& No designation \& \& 135 th Ave \& Intersection with US Hwy 83 \& Intersection with Us Hwy 52 \& Rural CMC Gravel \& \& \& 8.83 \& \& \& \& \& \& \& None \& 1 \& ${ }_{0} 0.0$ \& ${ }_{148}$ <br>
\hline 504.01 \& No designation \& \& Conty Road 19 S \& Intersection with US Hwy 52 \& Intersection with Ward 16 \& Rural Paved \& 2-Lane \& Low \& 0.77 \& 1 \& \& ${ }^{12}$ \& 2 \& 0 \& 0 \& Paved \& 9 \& 11.7 \& 170 <br>
\hline 504.02
504.03 \& No desiganation
No designation \& \& Conty Road 19 s
Conty Road 19 s \& Intersection with Ward 16
Intersection with Us Hwy 52 \& Intersection with US Hwy 52 \& Rural Paved
Rural Paved \& ${ }_{\text {2-Lane }}^{\text {2-Lane }}$ \& ${ }_{\text {Low }}^{\text {Low }}$ \& ${ }_{1}^{2.51}$ \& 1 \& \& 12
12 \& ${ }_{2}^{2}$ \& $\bigcirc$ \& 0 \& ${ }_{\text {Paxed }}$ \& 30

64 \& +12.0 \& | 388 |
| :--- |
| 48 | <br>

\hline
\end{tabular}

Detailed Corridor Information


Detailed Corridor Information

| Ward County Corridors |  |  |  |  |  | Light Conditions - SEVERE Only |  |  | Road Condition - SEVERE Only |  |  |  | $\begin{aligned} & \text { Road Characterisicics } \\ & \text { Straight on } \begin{array}{l} \text { Curve } \end{array} \text { Other } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Corridor | Route | \# | Local Name | Start | End | $\text { Day } \begin{array}{ll} \text { Dawn/ } \\ \text { Dusk } & \text { Str } \end{array}$ | Dark with Streetlights | $\begin{array}{ll} \text { Dark } & \text { Otherl } \\ \text { Unknown } \end{array}$ |  |  | $\begin{aligned} & \text { Snowl } \\ & \text { Slush } \end{aligned}$ | Other |  |
| 1.01 | Ward 1 | 1 | 534th St | Intersection with state route 50 | Intersection with 336 th Ave |  |  |  |  |  |  |  |  |
| 2.01 | Ward 2 | 2 | 4366t Ave | Intersection with 72 nd Ave | Intersection with 450thAve | - - |  |  |  |  |  |  |  |
| 2.02 | Ward 2 | 2 | 4366h Ave | Intersection with 590th ST | Intersection with Ward 11 | - |  |  |  |  |  |  |  |
| 2.03 | Ward 2 | 2 | 6 th St | Intersection with Ward 1 | Intersection with US Hwy 52 |  |  |  |  |  |  |  |  |
| 2.04 | Ward 2 |  | 422nd Ave | Intersection with US Hwy 52 | Intersection with Ward 3 |  |  |  |  |  |  |  |  |
| 2.05 | Ward 2 | 2 | 422nd Ave | Intersection with Ward 3 | Intersection with 52 nd Ave | - - |  | - |  |  |  |  |  |
| ${ }^{3.01}$ | Ward 3 | 3 | 436th St | Intersection with Ward 4 | Intersection with Ward 2 |  |  |  |  |  |  |  |  |
| ${ }^{3.02}$ | Ward 3 | 3 | ${ }^{4366 t h ~ S t}$ | Intersection with Ward 2 | Intersection with 90th St | - | - | - |  |  |  |  | - |
| 4.01 | Ward 4 | 4 | 366th Ave | Intersection with US Hwy 52 | Intersection with 52 nd Ave |  |  |  |  |  |  |  |  |
| 5.01 | Ward 5 | 5 | 394th St | Intersection with Ward 6 | Intersection with 2404th Ave |  |  |  |  |  |  |  |  |
| 5.02 | Ward 5 | 5 | 394th St | Intersection with 240th Ave | Intersection with US Hwy 52 | - - |  | - |  |  |  |  | - - |
| 5.03 | Ward 5 | 5 | Main St | Intersection with US Hwy 52 | Intersection with Ward 7 | - - |  |  |  |  |  |  | - |
| 6.01 | Ward 6 | ${ }_{6}$ | 1844t Ave | Intersection with Ward 5 | 1 mile to coity of carpio | - - |  | - - |  |  |  |  | - |
| 6.02 | Ward 6 | 6 | 184th Ave | 1 mie to 0 city of carpio | Intersection with state route 28 |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 6.03 \\ & 7.01 \end{aligned}$ | Ward 6 | ${ }_{7}^{6}$ | 198th Ave 282nd Ave | Intersection with state route 28 | Intersection with Reneville 6 ersection with 52nd Ave | $\div$ |  | - - |  | - |  |  | $\div$ |
| 8.01 | Ward 8 | 8 | 1288 t Ave | Intersection with US Hwy 52 | Intersection with Us Hwy 83 |  |  |  |  |  |  |  |  |
| 8.02 | Ward 8 | 8 | 1288 h Ave | Intersection with US Hwy 83 | Intersection with Ward 23 |  |  |  |  |  |  |  |  |
| 9.01 | Ward 9 | 9 | 338 St | Intersection with 37 rrd Ave | Intersection with state route 23 | 1 - |  |  |  |  |  |  | 1 |
| 9.02 | Ward 9 |  | ${ }^{338} 5 \mathrm{st}$ | Intersection with state route 23 | Intersection with Ward 20 |  |  |  |  |  |  |  |  |
| ${ }^{9.03}$ | Ward 9 | 9 | 310th St | Intersection with Ward 20 | Intersection with Ward 14 |  |  | 1 |  |  |  |  | - 1 |
| 9.04 | Ward 9 | 9 | ${ }^{310 \text { th St }}$ | Intersection with Ward 14 | Intersection with US Hwy 2 |  |  |  |  |  |  |  |  |
| 10.01 | Ward 10 | 10 | ${ }^{1844 \mathrm{~h} ~ S t}$ | Intersection with Ward 9 | Intersection with Granly St |  |  |  |  |  |  |  |  |
| 10.02 | Ward 10 | 10 | 19th Ave | Intersection with Granly St | Intersection with US Hwy 2 | - - | - | - |  |  |  |  | - |
| 10.03 | Ward 10 | 10 | 60 th St | Intersection with Ward 15 | Intersection with US Hwy 83 |  |  |  |  |  |  |  |  |
| 10.04 | Ward 10A | 10A | 46th Ave | Intersection with US Hwy 83 | Intersection with Ward 19 | - |  |  |  |  |  |  |  |
| 10.05 1101 | No designation Ward 11 |  | 46th Ave | Intersection with Ward 19 | Intersection with Ward 12 |  |  |  |  |  |  |  |  |
| 11.01 12.01 | Ward 11 Ward 12 | 112 | ${ }^{1844 \text { St }}$ 22nd St | ${ }_{\text {Intersection with US Hwy }} \mathbf{5 2}$ | Intersection with Ward Intersection with Ward 17 | $\div$ | - | - |  | - |  |  | $\div$ |
| 12.02 | Ward 12 | 12 | 4th Ave | Intersection with Ward 19 | Intersection with 55 th St |  |  |  |  |  |  |  |  |
| 12.03 | Ward 12 | 12 | 4th Ave | Intersection with 55 Sh St | Intersection with US Hwy 2 | - - | - | - |  | - |  |  | - . |
| 12.04 | Ward 12A | 12 | 55t St | Intersection with Ward 14 | Intersection with US Hwy 2 | - - |  |  |  |  |  |  |  |
| (12.05 | Ward 12A No designation |  | 55th St 55 th St | Intersection with US Hwy 2 | Intersection with 4th Ave | - : |  | : |  |  |  |  | - : |
| 14.01 | Ward 14 | 14 | 54 th Ave | Intersection with 008thst | Intersection with Ward 9 | - |  |  |  |  |  |  | - - |
| ${ }^{14.02}$ | Ward 14 | 14 | 544h Ave | Intersection with Ward 9 | Intersection with 62nd St | - - |  | - |  | - |  |  | ; |
| 14.03 | Ward 14 | 14 | 37th Ave | Intersection with 54 th Ave | Intersection with US Hwy 83 | 1 - |  |  |  | 1 - |  |  | 1 - |
| 14.04 | Ward 14 | 14 | 54th Ave | Intersection with US Hwy 83 | 1 mile east of 13 3th St | - - |  |  |  |  |  |  |  |
| 14.05 | Ward 14A | 14 | 38th St | 1 mile east of 13 th St | Intersection with 37 th Ave | - - | - | - |  |  |  |  | - - |
| 14.06 14.07 | Ward 14 | 14 | ${ }_{72 \text { ndid }}$ Ave | Intersection with Ward 14A | Intersection with 72 nd AVe Ave | - |  | : |  |  |  |  | $\square$ |
| ${ }^{15.02}$ | Ward 15 | 15 | ${ }_{57 \text { th St }}$ | Intersection with US Hwy 83 | Intersection with Ward 17 | - - | - | - |  | - |  |  | - - |
| 15.03 | Ward 15 | 15 | County Road 15 W | Intersection with Ward 17 | Intersection with Ward 10 |  | - |  |  |  |  |  |  |
| 15.04 | Ward 15 | 15 | County Road 15 W | Intersection with Ward 10 | 1 mile South of 86th St | - | - | - |  | - |  |  | - - |
| 15.05 | Ward 15 | 15 | County Road 15 W | 1 mile South of 86th St | Intersection with Ward 8 | - - |  |  |  |  |  |  |  |
| 16.01 16.02 | Ward 16 Ward 16 | 16 16 | 963rd Ave | Intersection with US Hwy 83 | Intersection with US Hwy 52 | - . | - | - |  |  |  |  | - |
| 16.03 | Ward 16 | 16 | 79th Ave | Intersection with 97 Th St | Intersection with 200th Ave |  |  |  |  |  |  |  |  |
| 17.01 | Ward 17 | 17 | 62nd St | Intersection with Ward 14 | Intersection with US Hwy 2 | - - | - |  |  | - - |  |  | - |
| 17.02 | Ward 17 | 17 | 54th St | Intersection with US Hwy 2 | Intersection with Ward 15 |  | i |  |  |  |  |  |  |
| 19.01 | Ward 19 | 19 | 27 H St | Intersection with Ward 12 | Intersection with Ward 8 | - - | 1 | - |  |  |  |  | 1 |
| 20.01 | Ward 20 | 20 | 205th Ave | Intersection with 380th St | Intersection with Ward 12 | - - | - | - |  |  |  |  |  |
| ${ }^{20.02}$ | Ward 20 | ${ }_{20}^{20}$ | 1117t Ave | Intersection with Ward 12 | Intersection with 142 d St | - |  | : |  |  |  |  | - |
| 22.01 | Ward 22 | 22 | 303 rd Ave | Intersection with Ward 9 | Intersection with Corona St | - - | - | - |  | - |  |  | - - |
| 22.02 | Ward 22 | 22 | 303rd Ave | Intersection with Corona St | Intersection with 142nd St |  | - |  |  |  |  |  |  |
| ${ }^{22.03}$ | Ward 22 | 22 | 303rd Ave | Intersection with 142nd St | Intersection with US Hwy 83 | - - | - | - |  | - |  |  | - - |
| 23.01 | Ward 23 | ${ }^{23}$ | 21 st Ave | Intersection with 37 rrd Ave | Intersection with state route 23 | - - | - | - |  |  |  |  | - - |
| ${ }^{23.02}$ | Ward 23 | ${ }_{23}^{23}$ | 21 st Ave | Intersection with state route 23 | Intersection with US Hwy 53 |  |  |  |  |  |  |  |  |
| 23.03 2304 | Ward 23 | ${ }_{23}^{23}$ | 1533d St | Quarter mile north of Dakota Ave | Intersection with US Hwy 2 |  |  |  |  |  |  |  |  |
| 23.04 24.01 | Ward 23 Ward 24 | 23 24 | ${ }_{\text {1 }}^{\text {153rd St }}$ | Intersection with US Hwy 20 | Intersection with 66th St | $1:$ |  |  |  | - |  |  | $\stackrel{1}{-}$ |
| 24.02 | Ward 24 | 24 | 3599t Ave | Intersection with 142 nd St | Intersection with US Hwy 83 |  |  |  |  |  |  |  |  |
| 500.01 | No designation |  | 254th St | Intersection with State route 23 | Intersection with Ward 20 |  |  |  |  |  |  |  |  |
| 501.01 | No designation |  | Main St | Intersection with 373rd Ave | Intersection with Ward 24 | - |  |  |  |  |  |  |  |
| ${ }^{501.02}$ | No designation |  | 142nd St | Intersection with Ward 24 | Intersection with State route 22 |  |  |  |  |  |  |  |  |
| 501.03 | No designation | NA | 142nd St | Intersection with State route 22 | Intersection with Ward 22 |  |  |  |  |  |  |  |  |
| 502.01 | No designation |  | 135 th Ave | Intersection with US HMy 83 | Intersection with Us Hwy 52 | - |  | - |  |  |  |  | - |
| 504.01 504.02 | No designation No designation |  | Conty Road 19 S Conty Road 19 | Intersection with US Hwy 52 | Intersection with Ward 16 |  |  |  |  |  |  |  |  |
| 504.03 | No designation |  | Conty Road 19 S | Intersection with US Hwy 52 | Intersection with Ward 14 |  |  |  |  |  |  |  |  |

Ward County
Rural Segment Listing

| Project Sheet Page* | Corridor | Route \# | Start | End | Length (miles) | Lane Departure Crashes | ADT | Lane <br> Departure Density | Access Density | Curves w/ Critical Radius / Mile | Edge Risk Assesment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.01 | Ward 1 | State Route 50 | 436th Ave | 8.8 | 2 | 309 | 0.05 | 8.1 | 0.45 | 1 |
|  | 2.01 | Ward 22 | 72nd Ave | 450thAve | 2.0 | 0 | 145 | 0.00 | 7.1 | 1.01 | 1 |
| 12 | 2.02 | Ward 22 | 590th ST | Ward 1 | 5.8 | 1 | 395 | 0.03 | 5.9 | 1.21 | 1 |
|  | 2.04 | Ward 22 | US Hwy 52 | Ward 3 | 4.5 | 0 | 430 | 0.00 | 8.7 | 0.22 | 1 |
|  | 2.05 | Ward 22 | Ward 3 | 52nd Ave | 5.0 | 0 | 230 | 0.00 | 6.2 | 0.00 | 1 |
|  | 5.02 | Ward 5 | 240th Ave | US Hwy 52 | 2.0 | 0 | 115 | 0.00 | 3.6 | 1.54 | 2 |
| 5 | 5.03 | Ward 55 | US Hwy 52 | Ward 7 | 1.8 | 0 | 80 | 0.00 | 11.4 | 3.42 | 2 |
|  | 6.02 | Ward 66 | 1 mile to city of carpio | State Route 28 | 1.8 | 0 | 60 | 0.00 | 5.1 | 3.40 | 1 |
| 4 | 8.01 | Ward $8 \quad 8$ | US Hwy 52 | US Hwy 83 | 12.9 | 0 | 174 | 0.00 | 5.3 | 0.39 | 2 |
|  | 8.02 | Ward 8 8 | US Hwy 83 | Ward 23 | 10.9 | 2 | 617 | 0.04 | 5.0 | 0.00 | 1 |
|  | 9.01 | Ward 9 9 | 373rd Ave | State Route 23 | 8.0 | 0 | 288 | 0.00 | 6.2 | 0.00 | 1 |
| 15 | 9.03 | Ward 9 9 | State Route 23 | Ward 14 | 15.5 | 3 | 328 | 0.04 | 4.6 | 0.45 | 1 |
|  | 9.04 | Ward 9 9 | Ward 14 | US Hwy 2 | 10.0 | 1 | 121 | 0.02 | 7.1 | 0.00 | 1 |
|  | 10.01 | Ward 1010 | Ward 9 | Granly St | 10.7 | 1 | 263 | 0.02 | 5.2 | 1.02 | 1 |
| 9 | 10.02 | Ward 1010 | Granly St | US Hwy 2 | 7.6 | 7 | 671 | 0.18 | 9.9 | 1.32 | 1 |
|  | 10.03 | Ward 10 10 | Ward 15 | US Hwy 83 | 4.8 | 2 | 457 | 0.08 | 6.0 | 0.42 | 1 |
|  | 10.04 | Ward 10A 10A | US Hwy 83 | Ward 19 | 2.0 | 1 | 1,793 | 0.10 | 11.1 | 0.00 | 1 |
|  | 11.01 | Ward 1111 | US Hwy 52 | Ward 6 | 4.9 | 0 | 1,680 | 0.00 | 5.3 | 0.20 | 1 |
|  | 12.02 | Ward 12 12 | Ward 19 | 55th St | 2.0 | 1 | 3,190 | 0.10 | 8.0 | 0.00 | 1 |
| 8 | 12.03 | Ward 12 12 | 55th St | US Hwy 2 | 4.1 | 3 | 1,204 | 0.15 | 14.2 | 0.49 | 1 |
| 14 | 14.02 | Ward 1414 | Ward 9 | 62nd St | 17.8 | 6 | 210 | 0.07 | 4.3 | 0.06 | 1 |
| 10 | 14.04 | Ward 14 14 | US Hwy 83 | 1 mile east of 13th St | 2.1 | 1 | 548 | 0.09 | 16.4 | 2.35 | 1 |
| 6 | 15.02 | Ward 15 15 | US Hwy 83 | Ward 17 | 2.2 | 8 | 4,010 | 0.72 | 10.8 | 0.45 | 1 |
| 1 | 15.03 | Ward 1515 | Ward 17 | Ward 10 | 2.8 | 2 | 2,510 | 0.14 | 12.0 | 1.45 | 2 |
| 11 | 15.04 | Ward 15 15 | Ward 10 | 1 mile South of 86th St | 2.2 | 2 | 520 | 0.19 | 15.3 | 3.25 | 1 |
| 7 | 17.02 | Ward 17 17 | US Hwy 2 | Ward 15 | 1.3 | 1 | 1,575 | 0.16 | 14.0 | 4.67 | 1 |
|  | 19.01 | Ward 1919 | Ward 12 | Ward 8 | 9.1 | 8 | 1,279 | 0.18 | 5.5 | 0.00 | 1 |
|  | 20.03 | Ward 2020 | 142nd St | US Hwy 83 | 10.0 | 1 | 302 | 0.02 | 4.5 | 0.30 | 1 |
|  | 22.01 | Ward 22.22 | Ward 9 | Corona St | 6.4 | 1 | 163 | 0.03 | 7.5 | 0.00 | 1 |
|  | 23.01 | Ward 2323 | 373rd Ave | State Route 23 | 9.3 | 0 | 141 | 0.00 | 4.9 | 0.65 | 1 |
|  | 23.02 | Ward 2323 | State Route 23 | US Hwy 53 | 7.7 | 1 | 362 | 0.03 | 4.0 | 0.65 | 1 |
| 13 | 23.04 | Ward 2323 | US Hwy 2 | 66th St | 9.1 | 4 | 310 | 0.09 | 6.9 | 0.22 | 1 |
|  | 24.01 | Ward 2424 | State Route 28 | 142nd St | 8.3 | 1 | 178 | 0.02 | 5.7 | 0.24 | 1 |
| 3 | 24.02 | Ward 2424 | 142nd St | US Hwy 83 | 9.7 | 1 | 283 | 0.02 | 6.3 | 0.21 | 2 |
|  | 501.03 | No designation NA | State Route 22 | Ward 22 | 5.1 | 0 | 85 | 0.00 | 4.1 | 0.40 | 2 |

## Edge Risk Legend

3 -- Risky' - NEITHER shoulder or good clear zone
2 -- Either a shoulder OR good clear zone
1 -- BOTH shoulder and a good clear zone
Critical ADT Range - Lane Departure
150
400

Ward County
Rural Segment Prioritization - Lane Departure Priority

| \# | Corridor | Route | \# | Start | End | Length | ADT | ADT Range | Lane Departure Density | Access Density | Curve <br> Critical <br> Radius <br> Density | Edge Risk | Totals | Edge Risk | ADT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15.03 | Ward 15 | 15 | Ward 17 | Ward 10 | 2.8 | 2,510 |  | $\star$ | $\star$ | $\star$ | $\star$ | $\star \star \star \star$ | 2 | 2,510 |
| 2 | 1.01 | Ward 1 | 1 | State Route 50 | 436th Ave | 8.8 | 309 | $\star$ | $\star$ | $\star$ | $\star$ |  | * * $\star \star$ | 1 | 309 |
| 3 | 24.02 | Ward 24 | 24 | 142nd St | US Hwy 83 | 9.7 | 283 | $\star$ |  |  | $\star$ | $\star$ | $\star \star \star$ | 2 | 283 |
| 4 | 8.01 | Ward 8 | 8 | US Hwy 52 | US Hwy 83 | 12.9 | 174 | $\star$ |  |  | $\star$ | $\star$ | $\star \star \star$ | 2 | 174 |
| 5 | 5.03 | Ward 5 | 5 | US Hwy 52 | Ward 7 | 1.8 | 80 |  |  | $\star$ | $\star$ | $\star$ | $\star \star \star$ | 2 | 80 |
| 6 | 15.02 | Ward 15 | 15 | US Hwy 83 | Ward 17 | 2.2 | 4,010 |  | $\star$ | $\star$ | $\star$ |  | $\star \star \star$ | 1 | 4,010 |
| 7 | 17.02 | Ward 17 | 17 | US Hwy 2 | Ward 15 | 1.3 | 1,575 |  | $\star$ | $\star$ | $\star$ |  | $\star \star \star$ | 1 | 1,575 |
| 8 | 12.03 | Ward 12 | 12 | 55th St | US Hwy 2 | 4.1 | 1,204 |  | $\star$ | $\star$ | $\star$ |  | $\star \star \star$ | 1 | 1,204 |
| 9 | 10.02 | Ward 10 | 10 | Granly St | US Hwy 2 | 7.6 | 671 |  | $\star$ | $\star$ | $\star$ |  | $\star \star \star$ | 1 | 671 |
| 10 | 14.04 | Ward 14 | 14 | US Hwy 83 | 1 mile east of 13th St | 2.1 | 548 |  | $\star$ | $\star$ | $\star$ |  | $\star \star \star$ | 1 | 548 |
| 11 | 15.04 | Ward 15 | 15 | Ward 10 | 1 mile South of 86th St | 2.2 | 520 |  | $\star$ | $\star$ | $\star$ |  | $\star \star \star$ | 1 | 520 |
| 12 | 2.02 | Ward 2 | 2 | 590th ST | Ward 1 | 5.8 | 395 | $\star$ | $\star$ |  | $\star$ |  | $\star \star \star$ | 1 | 395 |
| 13 | 9.03 | Ward 9 | 9 | State Route 23 | Ward 14 | 15.5 | 328 | $\star$ | $\star$ |  | $\star$ |  | * * * | 1 | 328 |
| 14 | 23.04 | Ward 23 | 23 | US Hwy 2 | 66th St | 9.1 | 310 | $\star$ | $\star$ |  | $\star$ |  | $\star \star \star$ | 1 | 310 |
| 15 | 14.02 | Ward 14 | 14 | Ward 9 | 62nd St | 17.8 | 210 | $\star$ | $\star$ |  | $\star$ |  | * $\star \star$ | 1 | 210 |
| 16 | 5.02 | Ward 5 | 5 | 240th Ave | US Hwy 52 | 2.0 | 115 |  |  |  | $\star$ | $\star$ | $\star \star$ | 2 | 115 |
| 17 | 501.03 N | o designation | NA | State Route 22 | Ward 22 | 5.1 | 85 |  |  |  | $\star$ | $\star$ | $\star \star$ | 2 | 85 |
| 18 | 10.04 | Ward 10A | 10A | US Hwy 83 | Ward 19 | 2.0 | 1,793 |  | $\star$ | $\star$ |  |  | $\star \star$ | 1 | 1,793 |
| 19 | 10.03 | Ward 10 | 10 | Ward 15 | US Hwy 83 | 4.8 | 457 |  | $\star$ |  | $\star$ |  | $\star \star$ | 1 | 457 |
| 20 | 2.04 | Ward 2 | 2 | US Hwy 52 | Ward 3 | 4.5 | 430 |  |  | $\star$ | $\star$ |  | * $\star$ | 1 | 430 |
| 21 | 23.02 | Ward 23 | 23 | State Route 23 | US Hwy 53 | 7.7 | 362 | $\star$ |  |  | $\star$ |  | $\star \star$ | 1 | 362 |
| 22 | 20.03 | Ward 20 | 20 | 142nd St | US Hwy 83 | 10.0 | 302 | $\star$ |  |  | $\star$ |  | $\star \star$ | 1 | 302 |
| 23 | 10.01 | Ward 10 | 10 | Ward 9 | Granly St | 10.7 | 263 | $\star$ |  |  | $\star$ |  | $\star \star$ | 1 | 263 |
| 24 | 24.01 | Ward 24 | 24 | State Route 28 | 142nd St | 8.3 | 178 | $\star$ |  |  | $\star$ |  | $\star \star$ | 1 | 178 |
| 25 | 12.02 | Ward 12 | 12 | Ward 19 | 55th St | 2.0 | 3,190 |  | $\star$ |  |  |  | $\star$ | 1 | 3,190 |
| 26 | 11.01 | Ward 11 | 11 | US Hwy 52 | Ward 6 | 4.9 | 1,680 |  |  |  | $\star$ |  | $\star$ | 1 | 1,680 |
| 27 | 19.01 | Ward 19 | 19 | Ward 12 | Ward 8 | 9.1 | 1,279 |  | $\star$ |  |  |  | $\star$ | 1 | 1,279 |
| 28 | 8.02 | Ward 8 | 8 | US Hwy 83 | Ward 23 | 10.9 | 617 |  | $\star$ |  |  |  | $\star$ | 1 | 617 |
| 29 | 9.01 | Ward 9 | 9 | 373rd Ave | State Route 23 | 8.0 | 288 | $\star$ |  |  |  |  | $\star$ | 1 | 288 |
| 30 | 2.05 | Ward 2 | 2 | Ward 3 | 52nd Ave | 5.0 | 230 | $\star$ |  |  |  |  | $\star$ | 1 | 230 |
| 31 | 22.01 | Ward 22 | 22 | Ward 9 | Corona St | 6.4 | 163 | $\star$ |  |  |  |  | $\star$ | 1 | 163 |
| 32 | 2.01 | Ward 2 | 2 | 72nd Ave | 450thAve | 2.0 | 145 |  |  |  | $\star$ |  | $\star$ | 1 | 145 |
| 33 | 23.01 | Ward 23 | 23 | 373rd Ave | State Route 23 | 9.3 | 141 |  |  |  | $\star$ |  | $\star$ | 1 | 141 |
| 34 | 6.02 | Ward 6 | 6 | 1 mile to city of carpio | State Route 28 | 1.8 | 60 |  |  |  | $\star$ |  | $\star$ | 1 | 60 |
| 35 | 9.04 | Ward 9 | 9 | Ward 14 | US Hwy 2 | Total Stars --\% That Gets Star -- |  |  |  |  |  |  |  | 1 | 121 |
|  |  |  |  |  |  |  |  | $\begin{gathered} \hline 14 \\ 40 \% \end{gathered}$ | $\begin{gathered} \hline 17 \\ 49 \% \end{gathered}$ | $\begin{gathered} \hline 11 \\ 31 \% \end{gathered}$ | $\begin{gathered} \hline 27 \\ 77 \% \end{gathered}$ | $\begin{gathered} \hline 6 \\ 17 \% \end{gathered}$ |  |  |  |


|  | $\#$ | $\%$ | Mileage | $\%$ |
| ---: | :---: | :---: | :---: | :---: |
| $\star \star \star \star \star$ | 0 | $0 \%$ | 0.0 | $0 \%$ |
| $\star \star \star \star$ | 2 | $6 \%$ | 11.6 | $5 \%$ |
| $\star \star \star$ | 13 | $37 \%$ | 92.1 | $40 \%$ |
| $\star \star$ | 9 | $26 \%$ | 55.1 | $24 \%$ |
| $\star \star$ | 10 | $29 \%$ | 59.4 | $26 \%$ |
|  | 1 | $3 \%$ | 10.0 | $4 \%$ |
|  | 35 | $100 \%$ | 228.2 | $100 \%$ |

Stars
ADT Range - If segment has an ADT in the range of most at risk ADT based on ATP totals. (> 150) Lane Departure Density - If segment has higher lane departure density than the county average (0.05).

Access Density If segment has access density than the county average (16.5)
Curve Critical Radius Density - If segment has higher density of curves with critical radius than the county average (0.3)
Edge Risk Assessment -|Edge risk of 2 or 3, based on assessment of roadway edge and clear zone.














## HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP) PROJECT APPLICATION

North Dakota Department of Transportation Programming SFN 59959 (06-2011)

## Ward 14 (54th Ave) from Ward 9 to 62nd St

Agency Name: Ward County
Contact Name: Dana Larsen

## Email Address: dana.larsen@wardnd.com

ND DOT District: 4
Telephone Number: 701-838-2810

Please attach a location map(s). You may use additional sheets to further describe your project.
Location Description



Ward County Rural Curve Projects

| Corridor | Local Street Name | Start | End | \# of Curves | Cost |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.01 | 534th St | State Route 50 | 436th Ave | 1 | \$ 5,265 |
| 2.02 | 436th Ave | 590th ST | Ward 11 | 1 | \$ 4,209 |
| 5.03 | Main St | US Hwy 52 | Ward 7 | 6 | \$ 25,727 |
| 6.03 | 198th Ave | State Route 28 | Reneville 6 | 1 | \$ 3,755 |
| 8.01 | 128th Ave | US Hwy 52 | US Hwy 83 | 1 | \$ 6,373 |
| 9.03 | 310th St | Ward 20 | Ward 14 | 0 | \$ 1,818 |
| 10.01 | 184th St | Ward 9 | Granly St | 0 | \$ 1,364 |
| 10.02 | 19th Ave | Granly St | US Hwy 2 | 4 | \$ 17,745 |
| 10.03 | 60 th St | Ward 15 | US Hwy 83 | 0 | \$ 1,364 |
| 12.03 | 4th Ave | 55th St | US Hwy 2 | 2 | \$ 9,109 |
| 14.04 | 54th Ave | US Hwy 83 | 1 mile east of 13th St | 5 | \$ 8,873 |
| 14.06 | 37th St | Ward 14A | 72nd AVe Ave | 1 | \$ 4,555 |
| 15.04 | County Road 15 W | Ward 10 | 1 mile South of 86th St | 1 | \$ 5,118 |
| 17.01 | 62nd St | Ward 14 | US Hwy 2 | 1 | \$ 5,464 |
| 17.02 | 54th St | US Hwy 2 | Ward 15 | 0 | \$ 2,727 |
| 23.02 | 21st Ave | State Route 23 | US Hwy 53 | 1 | \$ 4,555 |
| 501.03 | 142nd St | State Route 22 | Ward 22 | 1 | \$ 1,255 |
|  |  |  |  | 26 | \$ 109,276 |



|  |  |  |  |  | Inside |  |  |  |  |  |  |  |  |  |  | Crashes |  |  |  |  |  |  | Risk Factors |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Corridor | Segment | Start | End | $\begin{gathered} \text { paved } \\ \text { Phour } \\ \text { Souder } \\ \text { Witar } \end{gathered}$ | $\begin{gathered} \text { Ghavelder } \\ \text { Shouder } \\ \text { Widtan } \end{gathered}$ | $\underbrace{\substack{\text { cuter }}}_{\text {Curb }}$ | Shoulder | $\begin{gathered} \text { pheved } \\ \text { Shouder } \\ \text { Whater } \end{gathered}$ | $\begin{gathered} \text { Shavel } \\ \text { Shuolder } \\ \text { Wixith } \end{gathered}$ | ${ }_{\substack{\text { Curb } \\ \text { Guterer }}}^{\text {a }}$ | Shoulder ${ }_{\text {che }}$ | $\begin{array}{\|c} \text { Curve } \\ \begin{array}{c} \text { Advisory } \\ \text { Sign } \end{array} \\ \hline \end{array}$ | $\begin{aligned} & \text { Speed } \\ & \text { Advisory } \\ & \text { Sign } \end{aligned}$ | Chevrons | Total | Total Severe | $\kappa$ | A | в | c | PDo | $\underset{\substack{\text { Radius } \\ \text { (tit) }}}{\substack{\text { an}}}$ | $\begin{aligned} & \text { Severere } \\ & \text { Crash } \end{aligned}$ | adt |  | Intersection on Curve | $\begin{gathered} \text { Visualal } \\ \text { Trap } \end{gathered}$ | $\begin{gathered} \text { Risk } \\ \text { Ranking } \end{gathered}$ |
| 75010 V | ${ }^{10.03}$ | Ward 10 | Intersection with Ward 15 | Intersection with US Hwy 83 | ${ }_{8}^{8}$ | 0 | 0 | Paved | ${ }_{8}^{8}$ | 0 | 0 | Paved <br> Paved | Yes | Yes | No | ${ }_{2}$ |  |  |  |  |  |  | ${ }_{820}^{820}$ | $\xrightarrow{\text { No }}$ | ${ }_{457}^{457}$ | No | No | Yes |  |
| 760100 $77000 \times$ | 10.03 10.03 | Ward 10 Ward 10 | Intersection with Ward 15 | Intersection with US Hwy 83 | ${ }_{8}^{8}$ | 0 | 0 | Paved Paved | ${ }_{8}^{8}$ | 0 | ${ }_{0}$ | Paved <br> Paved | No | No | Yes | ${ }_{1}$ | 1 | ; | 1 |  |  |  | 850 320 | Yes | ${ }_{457}^{457}$ | No | No | No No | $\stackrel{\text { * }}{\star \star}$ * |
| 78011 A | 11.01 | Ward 11 | Intersection with US Hwy 52 | Intersection with Ward 6 | 0 | 0 | 0 | None | 0 | 0 | 0 | None | No | No | No |  |  |  |  |  |  |  | 220 | No | 1680 | Yes | Ves | No | * |
| 79011 B | 11.01 | Ward 11 | Intersection with US Hwy 52 | Intersection with Ward 6 | 0 | 0 | 0 | None | 0 | 0 | 0 | None | Yes | No | No | 2 |  |  |  |  |  |  | 1300 | No | 1680 | No | No | No |  |
| ${ }^{80} 012 \mathrm{~A}$ | ${ }^{12.01}$ | Ward 12 | 1 mile west of Ward 17 | Intersection with Ward 17 | ${ }^{4}$ | 0 | 0 | Paved | ${ }_{4}^{4}$ | 0 | 0 | Paved | ${ }^{\text {Yes }}$ | Yes | No | 1 |  |  |  |  |  |  | ${ }^{400}$ | No | ${ }^{260}$ | No | № | No | $\star$ |
| ${ }^{810128}$ | 12.01 | Ward 12 | 1 mile west of Ward 17 | Intersection nith Ward 17 | 4 | 0 | 0 | ${ }^{\text {Paved }}$ | 4 | 0 | 0 | ${ }^{\text {Paved }}$ | Yes | No | No | 5 |  |  |  |  | 1 |  | 2000 | No | ${ }_{1200}{ }_{1204}$ | No | \% | No |  |
| 82012 C 83012 D | 12.03 12.03 1 | Ward 12 Ward 12 | Intersection with 55th St | Intersection with US Hwy 2 | ${ }_{2}^{2}$ | 0 | 0 | Paved Paved | ${ }_{2}^{2}$ | 0 | 0 | Paved <br> Paved | No | No No | No No | 1 |  | . | . | - |  |  | 70 170 | No No | 1204 1204 1204 | Yes No | Yes | Yes No | ** |
| 84014 A | ${ }_{1}^{14.02}$ | Ward 14 | Intersection with Ward 9 | Intersection with 62 2nd St | ${ }_{2}$ | 0 | 0 | ${ }^{\text {Paved }}$ | 2 | 0 | 0 | ${ }_{\text {Paved }}$ | Yes | Yes | No | 1 |  |  |  |  |  |  | 820 | No | 210 | No | No | Yes | $\star \star$ |
| 85014 B | 14.03 | Ward 14 | Intersection with 544 Ave | Intersection with US Hwy 83 | ${ }^{2}$ | 0 | 0 | Paved | 2 | 0 | 0 | Paved | Yes | Yes | No | 1 |  |  |  |  |  |  | 840 | No |  |  |  | Yes | *** |
| 86014 C | 14.03 | Ward 14 | Intersection with 54 th Ave | Intersection with US Hwy 83 | 2 | 0 | 0 | Paved | 2 | 0 | 0 | Paved | No | No | No |  |  |  |  |  |  |  | 1000 | No | 1010 |  | es | No | ** |
| 87014 D | 14.03 | Ward 14 | Intersection with 544 Ave | Intersection with US Hwy 83 | 2 | 0 | 0 | Paved | 2 | 0 | 0 | Paved | No | No | No |  |  | - | - | - | - |  | 330 | No | 1010 | No | No | No |  |
| 88 014E | 14.03 | Ward 14 | Intersection with 54 th Ave | Intersection with US Hwy 83 | 2 | 0 | 0 | Paved | 2 | 0 | 0 | Paved | No | No | No | 2 |  |  |  |  |  | $2$ | 620 | No | 1010 | No | No | No |  |
| 89014 F | 14.04 | Ward 14 | Intersection with US Awy 83 Intersecion with US Hwy 83 | 1 mile east of 13th St | 1 | 1 |  | ${ }^{\text {Composite }}$ | 1 | 1 | 0 | Composits | Yes | No | Yes |  |  |  |  |  |  |  | ${ }^{180}$ | No | 548 | No | No | Yes | $\star \star$ |
| ${ }_{90}^{90} 01014 \mathrm{G}$ | 14.04 | Ward 14 | Intersection with US Hwy 83 | 1 1 mile east of 13 St St | 1 | 1 | $\bigcirc$ | Composite | 1 | 1 | $\bigcirc$ | Composit |  |  | No |  |  |  |  |  |  |  | 300 | No | 548 548 |  |  | No |  |
| ${ }_{92} 910141$ | 14.04 14.04 | Ward 14 | Intersection witus Hey Intersection with US Hwy 8 3 | 1 mile easto of 13 Sth St | 1 | 1 | ${ }_{0}$ | Composite | 1 | 1 | $0_{0}^{0}$ | Composit | Yes | Yes |  | ${ }_{3}$ |  | : | : | 2 |  |  | ${ }_{1200}^{1400}$ | No No | 548 548 548 | No | No No No | No No | $\stackrel{\star}{\star}$ * |
| 93014 J | 14.04 | Ward 14 | Intersection with US Hwy 83 | 1 mile east of 13 St St | 1 | 1 | 0 | Composite | 1 | 1 | 0 | Composit | Yes | Yes | Yes |  |  |  |  |  |  |  | ${ }_{3} 1200$ | No | 548 | No | , | No | $\stackrel{\star}{\star}$ |
| 94014 K | 14.05 | Ward 14A | 1 mile east of 13th St | Intersection with 37 7th Ave | ${ }_{2}$ | 0 | 0 | Paved | 2 | 0 | 0 | Paved | Yes | Yes | No | 1 |  |  |  |  |  |  | 420 | No | 300 | No | No | No | $\star$ |
| ${ }^{95014 L}$ | 14.05 | Ward 14A | 1 mile east of 13 St St | Intersection with 37 7th Ave |  | 0 | 0 | Paved | ${ }^{2}$ |  |  | Paved |  | No |  | 1 |  |  |  |  |  |  |  | No | 300 | No |  |  |  |
| 96014 N 97 | ${ }^{14.05}$ | Ward 14A | 1 mile east of 13 Sh St | Intersection win W 7 A Ahe | ${ }_{2}^{2}$ | ${ }_{0}^{0}$ | ${ }_{0}^{0}$ | Paved Paved | ${ }_{2}^{2}$ | ${ }_{0}$ | 0 | Paved Paved | Yes Yes | No |  |  | 1 | : | 1 | 1 |  |  | 6800 180 | Yes No | 300 300 | No |  | No No |  |
| 980140 | 14.06 | Ward 14 | Intersection with Ward 14A | Intersection with 7 2nd AVe Ave | ${ }^{2}$ | 0 | 0 | Paved | 2 | 0 | 0 | Paved |  |  |  |  |  |  |  |  |  |  | 150 | No | 408 |  | 枵 | No | ** |
| 99014 P | 14.06 | Ward 14 | Intersection with Ward 14A | Intersection with 7 2nd AVe Ave | ${ }^{2}$ | 0 | 0 | Paved | ${ }^{2}$ | 0 | 0 | Paved |  |  |  | 1 |  |  | - |  |  |  | 480 | No | 408 |  | yes | No | ** |
| 100 1014 C 101014 R | ${ }^{14.06}$ | Ward 14 | Intersection with Ward 14A | Intersection with 7 2nd Ave Ave | 2 | 0 | 0 | Paved Paved | ${ }_{2}$ | 0 | 0 | Paved <br> Paved |  |  |  | 2 |  |  | : |  |  |  | 920 550 | No | 408 | No | No | No |  |
| 101014 R | ${ }_{1}^{14.06}$ | Ward 14 | Intersection with Ward 14A | Intersection with 7 2nd AVE Ave | 2 | 0 | 0 | Paved Paved | ${ }_{2}^{2}$ | 0 | 0 | Paved Paved |  |  |  | 1 |  |  | : | . |  |  | 550 600 | No | ${ }_{408}^{408}$ | No | No | No No | $\stackrel{\star \star}{\star \star}$ |
| 103015 A | 15.04 | Ward 15 | Intersection with Ward 10 | 1 mile South of 86 th St | ${ }^{2}$ | 0 | 0 | Paved |  | 0 | 0 | Paved |  |  |  |  |  |  |  |  |  |  | ${ }^{3400}$ | No | 520 | No | No | No |  |
| 1040158 | 15.04 | Ward 15 | Intersection with Ward 10 | 1 mile South of 86th St | 2 | 0 | 0 | Paved | 2 | 0 | 0 | Paved |  |  |  | - |  |  | - |  |  |  | 2300 | No | 520 | No |  | No |  |
| 105015 C | 15.04 | Ward 15 | Intersection with Ward 10 | 1 mile South of 86th St | 2 | 0 | 0 | Paved | 2 | 0 | 0 | Paved |  |  |  | - |  |  | - |  |  |  | 2300 | No | 520 | No |  | No |  |
| 106015 D | 15.04 | Ward 15 | Intersection with Ward 10 | 1 mile South of 86th St | ${ }_{2}$ | 0 |  | Paved | ${ }_{2}$ | 0 | 0 | ${ }^{\text {Paved }}$ |  |  |  |  |  |  | - |  |  |  | 3000 1650 | No | 520 | No | No | No | * |
| 107015 E 108015 F | 15.04 15.04 | Ward 15 | Intersection with Ward 10 Intersection with Ward 10 | 1 mile South of 88 Sth St 1 mile South of 8 th St | , | 0 | 0 | Paved Paved | 2 | 0 | 0 | Paved <br> Paved |  |  |  | - |  |  | : |  |  |  | 1650 800 | No No | 520 520 | $\xrightarrow{\text { No }}$ | No | No |  |
| 1090156 | ${ }^{15.04}$ | Ward 15 | Intersection with Ward 10 | 1 mile South of 8 Sth St | 2 | 0 | 0 | (eaved | 2 | 0 |  | ${ }^{\text {Paved }}$ |  |  |  |  |  | : | : |  |  |  | 800 900 | No | 520 520 | Yes | Yes | Yes | $\stackrel{*}{\star \star \star \star}$ **** |
| 110015 H | ${ }^{15.03}$ | Ward 15 | Intersection with Ward 17 | Intersection with Ward 10 | ${ }^{6}$ | 0 | 0 | Paved |  | 0 | 0 | Paved |  |  |  |  |  |  |  |  |  |  |  | No | 2510 |  | es | No | * |
| 1110151 | 15.03 | Ward 15 | Intersection with Ward 17 | Intersection with Ward 10 | 6 | 0 | 0 | Paved | 6 | 0 | 0 | Paved |  |  |  | - |  | - | - |  |  |  | 2100 | No | 2510 | No |  | No |  |
| $112015 J$ 113015 K | 15.03 15.03 | Ward 15 | Intersection with Ward 17 Intersection with Ward 17 | Intersection w wh Ward 10 | 6 6 | 0 | 0 | Paved Paved | ${ }_{6}^{6}$ | 0 | 0 | Paved <br> Paved |  |  |  | 4 |  | : | : | - | : | 4 | 3000 | No No | 2510 2510 |  | Ves | No <br> No | * |
| 114015 L | 15.02 | Ward 15 | Intersection with US Hwy 83 | Intersection with Ward 17 | 2 | 2 | 0 | Composite | 2 | 2 | 0 | Composite |  |  |  |  |  | - | . | - |  |  | 1650 | No | 4010 |  | 部 | Yes | $\star \star$ |
| 115016 A | 16.02 | Ward 16 | Intersection with US HWy 52 | $\frac{\text { Intersection with } 9 \text { T7t St }}{\text { Int }}$ | 2 | 0 | 0 | Paved | 4 | 0 | 0 | Paved |  |  |  | 2 |  |  | . | 1 |  |  | 160 | No | $\stackrel{210}{315}$ |  | es | No |  |
| - 1160178 | ${ }^{17.01}$ | Ward 17 Ward 17 | Intersection with Ward 14. | Intersection with US Hwy 2 | ${ }_{4}^{4}$ | ${ }_{0}$ | 0 | Paved Paved | ${ }_{4}^{4}$ | ${ }_{0}$ | ${ }_{0}^{0}$ | Paved Paved |  |  |  | ${ }_{6}^{2}$ |  | : | - | ; |  | 5 |  | No No | 315 315 | No |  |  | $\stackrel{\star}{\star \star}$ |
| 118017 C | 17.01 | Ward 17 | Intersection with Ward 14 | Intersection with US H y 2 | 4 | 0 | 0 | Paved | 4 | 0 | 0 | Paved |  |  |  | ; |  | - |  |  |  |  | 530 | No | 315 | No |  | No | $\star \star$ |
| 1190170 | 17.01 | Ward 17 | Intersection with Ward 14 | Intersection with US Hwy 2 | 4 | 0 | 0 | Paved | 4 | 0 | 0 | Paved |  |  |  | 7 |  |  |  |  |  |  | 200 | No | 315 |  | es | Yes |  |
| 120017 E 121017 F | 17.01 17.01 | Ward 17 | Intersection with Ward 14 | Intersection with US Hwy ${ }^{\text {a }}$ | 4 | $\bigcirc$ | 0 | ${ }_{\text {Pa }} \begin{aligned} & \text { Paved } \\ & \text { Paved }\end{aligned}$ | 4 | 0 | 0 | ${ }_{\substack{\text { Paved } \\ \text { Paved }}}$ |  |  |  | 11 11 | 2 | . | $\stackrel{2}{ }$ | 1 |  | ${ }_{13}^{9}$ | 810 60 | Yes No d | 315 315 |  | ¢es | $\underset{\text { Nos }}{\text { Nos }}$ |  |
| ${ }^{1220176}$ | 17.01 | Ward 17 | Intersection with Ward 14 | Intersection with Us Hwy 2 | 4 | 0 | 0 | Paved | 4 | 0 | 0 | Paved |  |  |  | 1 |  |  | - |  |  |  | 600 | No | 315 | No | No | No | ** |
| - 123017 H | 17.01 1701 | Ward 17 | Intersection with Ward 14 | Intersection with US Hwy 2 | ${ }_{4}^{4}$ | $\bigcirc$ | $\bigcirc$ | Paved Paved | ${ }_{4}^{4}$ | $\bigcirc$ | $\bigcirc$ | Paved <br> Paved |  |  |  | 1 |  |  | - | - | 1 |  | 230 50 | No | 315 315 |  | Yes | No | $\stackrel{*}{\star \star}$ |
| 125017 J | 17.02 | Ward 17 | Intersection with US Hwy 2 | Intersection with Ward 15 | 4 | 0 | 0 | Paved | 4 | 0 | 0 | ${ }_{\text {Paved }}$ |  |  |  | 2 |  |  |  |  |  |  | 800 | No | 1575 | No |  | No |  |
| 126017 K | 17.02 | Ward 17 | Intersection with Us Hwy 2 | Intersection with Ward 15 | 4 | 0 | 0 | Paved | 4 | 0 | 0 | Paved |  |  |  | 1 |  |  |  |  |  |  | 550 | No | 1575 | No |  | No | * |
| 127017 L | 17.02 | Ward 17 | Intersection with US Hwy 2 | Intersection with Ward 15 | 4 | 0 | 0 | Paved | 4 | 0 | 0 | Paved |  |  |  |  |  |  |  |  |  |  | 800 | No | 1575 | No | No | No |  |
| 128017 M 129017 N | 17.02 <br> 1702 | Wara Ward 17 | Intersection with US Hwy ${ }^{\text {a }}$ | Intersection wih Ward 15 | ${ }_{4}^{4}$ | ${ }_{0}$ | ${ }_{0}$ | (eared | ${ }_{4}^{4}$ | 0 | ${ }_{0}$ | Paved <br> Paved |  |  |  |  |  |  | : |  |  |  | ${ }_{420}^{450}$ | No No | 1575 1575 |  | No | No |  |
| 1300170 | 17.02 | Ward 17 | Intersection with US HWy 2 | Intersection with Ward 15 | 4 | 0 | 0 | Paved | 4 | 0 | 0 | ${ }^{\text {Paved }}$ |  |  |  |  |  |  |  |  |  |  | ${ }_{380}$ | No | 1575 |  | es | No | * |
| 131020 A | 20.03 | Ward 20 | Intersection with 142nd St | Intersection with US Hwy 83 |  | 0 |  | Paved |  |  |  | Paved |  |  |  | 1 |  |  |  |  |  |  | 1800 |  |  |  |  | No |  |
| 1320208 1330200 | 20.03 20.03 | Ward 20 Ward 20 | Intersection with $142 n$ dt Intersection with 142nd St | Intersection with US Hwy 83 Intersection with US Hwy 83 | 2 | 0 | 0 | Paved Paved | ${ }_{2}^{2}$ | 0 | 0 | Paved <br> Paved |  |  |  | - |  | . | : |  |  |  | ${ }_{2000}^{1500}$ | No No | 302 302 | No No | No | No No | * |
| 134023 A | ${ }^{23.04}$ | Ward 23 | Intersection with US Hwy 2 | Intersection with 6 6th St | ${ }^{2}$ |  | 0 | Paved |  |  |  | Paved |  |  |  |  |  |  |  |  |  |  | 1600 | No | 310 |  |  |  |  |
| 1350238 | 23.04 | Ward 23 | Intersection with US Hwy 2 | Intersection with 6 6it St | 2 | 0 | 0 | Paved | 2 | 0 | 0 | Paved |  |  |  | . |  | . | . | . |  |  | 1200 | No | 310 | No | , | No | ** |
| ${ }^{1360238}$ | ${ }^{23.02}$ | Ward 23 | Intersection with state route 23 | Intersection with US Hwy 53 | ${ }_{2}^{2}$ | O |  | Paved | ${ }^{2}$ | 0 |  | Paved |  |  |  |  |  |  |  |  |  |  | 3000 | No | ${ }^{362}$ | No |  | No |  |
| 137023 D 138023 E | 23.02 23.02 | Ward 23 Ward 23 | Intersection with state route 23 Intersection with sate rout 23 | Intersection with US Hwy Intersection with US Hwy 53 | ${ }_{2}^{2}$ | 0 | ${ }_{0}$ | Paved Paved | 2 | ${ }_{0}$ |  | Paved <br> Paved |  |  |  | . |  | - | . |  |  |  | 3200 2500 | No No | ${ }_{362}^{362}$ | No | No | No No |  |
| 139023 F | ${ }^{23.02}$ | Ward 23 | Intersection with state route 23 | Intersection with US Hwy 53 | 2 | 0 | 0 | Paved | 2 | 0 | 0 | Paved |  |  |  |  |  |  | - |  |  |  | 1600 | No | 362 | No | No | No | $\stackrel{ }{*}$ |
| 1400236 141023 H | 23.02 23.02 | Ward 23 | Intersection with state route 23 | Intersection with US Hwy Intersection with US Hwy 53 | ${ }_{2}^{2}$ | 0 | ${ }_{0}$ | Paved Paved | 2 | ${ }_{0}$ | $\bigcirc$ | Paved Paved |  |  |  | 1 |  | : | : | : |  | 1 | 1300 420 | No | 362 <br> 362 <br> 1 | ${ }_{\text {Nos }}$ | No | Yes No | $\star \star$ |
| 1420231 | 23.01 | Ward 23 | Intersection with 373 rrd Ave | Intersection with state route 23 | 2 | 0 | 0 | Paved | 2 | 0 |  | Paved |  |  |  | 1 |  |  |  | 1 |  |  | 1600 | No | 141 | No |  | Yes |  |
| 1430233 | ${ }^{23.01}$ | Ward 23 | Intersection with 377rd Ave | Intersection with state route 23 | 2 | 0 | 0 | Paved | 2 | 0 | 0 | Paved |  |  |  |  |  |  |  |  |  |  | 1400 | No | 141 | No | o | No |  |
| - $\begin{aligned} & 144023 \mathrm{O} \\ & 145023 \mathrm{~L}\end{aligned}$ | ${ }_{23.01}^{23.01}$ | Ward 23 Ward 23 | Intersection with 373rd Ave | Intersection with state route 23 Intersecion with state route 23 | 2 | 0 | 0 | Paved Paved | ${ }_{2}^{2}$ | ${ }_{0}$ | 0 | Paved Paved |  |  |  |  |  |  |  |  |  |  | 1900 2500 | No No | 141 141 | No No |  | No No |  |
| 146023 M | ${ }_{2}^{23.01}$ | Ward 23 | Intersection with 377 rrd Ave | Intersection with state route 23 | 2 | 0 | - | Paved | 2 | 0 | 0 | Paved |  |  |  |  |  |  |  |  |  |  | ${ }^{1500}$ | No | 141 | Yes | es | No | * |
| 147023 N |  |  |  | Intersection win state route 23 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP) PRO <br> North Dakota Department of Transportation Programming SFN 59959 (06-2011) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Agency Name: Ward County <br> Contact Name: Dana Larsen <br> Email Address: dana.larsen@wardnd.com <br> ND DOT District: 4 <br> Telephone Number: 701-838-281 <br> Please attach a location map(s). You may use additional sheets to further describe your project. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Location Description (Corridor Containing Curves) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | State 436th 2-Lan Ro9 Rural Ward | Route Ave Paved |  |  |  | ne Width eed Limit: der Width: der Type: (miles) Installed: | $2 '$ High ' None .8 No |  |  |  | SHSP Empha educe Alcohol Imp crease the Use of ounger Driver/Old urb Aggressive Dr mprovements to Ad nhancing Emerge mprove Intersectio | Area (check all ired Driving afety Restraints Driver Safety ing ress Lane Depa y Medical Capa Safety | that apply) <br> for all Occupan <br> ure Crashes ilities to Increa | Survivability |
| Describe Current Safety Issues \& Systemic Ranking Review |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| North Dakota Crashes, 2008-2012 |  |  |  |  |  |  | years |  |  |  |  |  |  |  |
| Curve ID | K | A | Radius (ft) | ADT | Intersection on Curve | Visual Trap | Risk Ranking | Oil County Project | Project Suggested | Sign Improvement Project | Shoulder Paving Project | Shoulder Rumble Strip Project | Advance <br> Horizontal <br> Alignment <br> Warning Sign | Advisory Speed Plaque |
| 001A | 0 | 0 | 850 | 309 | Yes | Yes | $\star \star \star \star$ | YES | Yes | - | - | Inside/Outside | 0 | 0 |
| 001B | 0 | 0 | 1000 | 309 | No | No | * $\star$ | YES | Yes | - | - | Inside/Outside | - | 0 |
| 001C | 0 | 0 | 1700 | 309 | No | No | $\star$ | No | Yes | Chevron | - | Inside/Outside | - | - |
| 001D | 0 | 0 | 770 | 309 | No | No | ** | YES | Yes | - | - | Inside/Outside | 0 | 0 |

*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria


*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria


*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria

|  |  |  |
| :--- | :--- | :--- |



*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria


## HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP) PROJECT APPLICATION <br> North Dakota Department of Transportation Programming <br> SFN 59959 (06-2011)

## Curves on Ward 9 from State Route 23 to Ward 14

Agency Name: Ward County
Contact Name: Dana Larsen
Email Address: dana.larsen@wardnd.com

ND DOT District: 4
Telephone Number: 701-838-2810

Please attach a location map(s). You may use additional sheets to further describe your project.
Location Description (Corridor Containing Curves)

*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria

|  |  |  |
| :--- | :--- | :--- |

## HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP) PROJECT APPLICATION <br> North Dakota Department of Transportation Programming <br> SFN 59959 (06-2011)

## Curves on Ward 10 from Ward 9 to Granly St



## HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP) PROJECT APPLICATION <br> North Dakota Department of Transportation Programming <br> SFN 59959 (06 Depa


*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria

|  |  |  |
| :--- | :--- | :--- |


*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria

|  |  |  |
| :--- | :--- | :--- |


*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria

|  |  |  |
| :--- | :--- | :--- |


*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria


*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria

|  |  |  |
| :--- | :--- | :--- |


| HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP) PROJECT APPLICATION <br> North Dakota Department of Transportation Programming SFN 59959 (06-2011) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Curves on Ward 15 from Ward 10 to 1 mile South of 86th St  <br> ND DOT District: 4  <br> Agency Name: Ward County  <br> Contact Name: Dana Larsen  <br> Email Address: dana.larsen@wardnd.com  <br> Telephone Number: 701-838-2810  <br> Please attach a location map(s). You may use additional sheets to further describe your project. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Location Description (Corridor Containing Curves) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2-La | South | of 86th St |  |  | ne Width eed Lim er Width: der Typ (miles) Installe | $2^{\prime}$ High ' Paved .2 No |  |  | $\begin{aligned} & \square \\ & \square \end{aligned}$ | SHSP Empha Reduce Alcohol Imp Increase the Use of Younger Driver/Old Curb Aggressive Dr Improvements to Ad Enhancing Emergen Improve Intersection | Area (check all ired Driving Safety Restraints Driver Safety ing ress Lane Depa y Medical Capab Safety | that apply) or all Occupan ure Crashes ilities to Increa | Survivability |
| Describe Current Safety Issues \& Systemic Ranking Review |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| North Dakota Crashes, 2008-2012 |  |  |  |  | 5 years |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | Intersection on Curve | Visual Trap | Risk Ranking | Oil County Project | Project Suggested | Sign Improvement Project | Shoulder Paving Project | Shoulder Rumble Strip Project | Advance <br> Horizontal <br> Alignment Warning Sign | Advisory Speed Plaque |
| 015A | 0 | 0 | 3400 | 520 | No | No | $\star$ | No | Yes | Chevron | - | Inside/Outside | - | - |
| 015B | 0 | 0 | 2300 | 520 | No | No | $\star$ | No | - | - | - | - | - | - |
| 015C | 0 | 0 | 2300 | 520 | No | No | * | No | - | - | - | - | - | - |
| 015D | 0 | 0 | 3000 | 520 | No | No | * | No | - | - | - | - | - | - |
| 015E | 0 | 0 | 1650 | 520 | No | No | $\star$ | YES | Yes | - | - | Inside/Outside | - | - |
| 015F | 0 | 0 | 800 | 520 | Yes | Yes | ** $\star$ * | YES | Yes | - | - | Inside/Outside | 0 | 45 |
| 015G | 0 | 0 | 900 | 520 | Yes | Yes | $\star \star \star \star$ | YES | Yes | - | - | Inside/Outside | 0 | 50 |

*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria

|  |  |  |
| :--- | :--- | :--- |


| $\begin{aligned} & \text { HIGHWA } \\ & \text { North Dakot } \\ & \text { SFN } 59959 \text { (o } \end{aligned}$ | Dep | men | IMPROV <br> of Transpo | MEN tion P | ROGRA <br> mming | $\overline{\mathrm{ISIP}}$ | ROJE | APPL | TION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Please attach | locat |  | Agen Cont Email <br> (s). You ma | Nam Nam ddres e addi | Ward Coun Dana Larse ana.larsen sheets to fu | $\text { ves } 0$ <br> wardn $r$ describ | Ward <br> com <br> your proje | 7 from | Vard |  | $2$ <br> DOT Distric hone Numbe | 701-838-281 |  |  |
| Location D | crip | ion | Corridor | ntaini | urves) |  |  |  |  |  |  |  |  |  |
| $\begin{array}{r} \text { Star } \\ \text { End } \\ \text { Facility Type } \\ \text { ADT } \\ \text { Road Type } \\ \text { County Road } \end{array}$ |  | $\begin{aligned} & 14 \\ & \text { wy } 2 \end{aligned}$ |  |  |  | ne Width eed Lim er Width der Typ (miles) Installe | $2^{\prime}$ <br> Low <br> Paved <br> 3.1 <br> No |  |  | $\begin{aligned} & \square \\ & \square \\ & \square \\ & \square \\ & 0 \\ & \square \end{aligned}$ | SHSP Empha educe Alcohol Im crease the Use of ounger Driver/Old urb Aggressive D mprovements to A nhancing Emerge mprove Intersectio | Area (check a ed Driving afety Restraints Driver Safety ng <br> ess Lane Depa Medical Capa Safety | that apply) <br> or all Occupan <br> ure Crashes lities to Increas | Survivability |
| Describe C | rren | Sat | ty Issues | yste | Ranking R | iew |  |  |  |  |  |  |  |  |
| North Dakota | ashe | 200 | -2012 |  |  |  | years |  |  |  |  |  |  |  |
| Curve ID | K | A | Radius (ft) | ADT | Intersection on Curve | Visual Trap | Risk Ranking | Oil County Project | Project Suggested | Sign Improvement Project | Shoulder Paving Project | Shoulder Rumble Strip Project | Advance <br> Horizontal <br> Alignment <br> Warning Sign | Advisory Speed Plaque |
| 017A | 0 | 0 | 1000 | 315 | No | No | * $\star$ | YES | - |  |  |  |  |  |
| 017B | 0 | 0 | 1150 | 315 | No | No | $\star \star$ | No | - |  |  | - | - | - |
| 017C | 0 | 0 | 530 | 315 | No | No | * $\star$ | YES | - | - | - | - | - | - |
| 017D | 0 | 0 | 200 | 315 | Yes | Yes | $\star \star \star$ | YES | Yes | - | - | Inside/Outside | 0 | Inspect Curve |
| 017E | 0 | 0 | 810 | 315 | Yes | No | $\star \star \star$ | YES | Yes | - | - | Inside/Outside | 0 | 45 |
| 017F | 0 | 0 | 60 | 315 | Yes | Yes | $\star \star \star$ | No | Yes | Chevron | - | Inside/Outside | x | Inspect Curve |
| 017G | 0 | 0 | 600 | 315 | No | No | ** | No | - | - | - | - | - | - |
| 017H | 0 | 0 | 230 | 315 | Yes | No | $\star \star$ | No | - | - | - | - | - | - |
| 0171 | 0 | 0 | 50 | 315 | Yes | No | * $\star$ | No | - | - | - | - | - | - |

*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria


*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria


| HIGHWA <br> North Dako SFN 59959 | Depa | men | IMPROV <br> of Transp |  | ROGRA <br> amming | $\overline{I S I P)}$ | ROJE | APPL | TION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Please attac | cat |  | Agen Cont Emai <br> (s). You ma |  | Curve <br> Nard Coun Dana Larse dana.larsen al sheets to fu | on W <br> wardn <br> r descri | rd 23 <br> com <br> your proje | om S | Rout | 23 to US <br> Te | wy 53 <br> D DOT Distric hone Number: | 701-838-28 |  |  |
| Location | cri | ion | Corridor | ntain | Curves) |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | ne Width eed Lim er Width der Typ (miles) Installe | $2 '$ <br> High <br> Paved <br> 7 <br> o |  |  | $\begin{aligned} & \square \\ & \square \\ & \square \\ & \square \\ & 0 \\ & \square \end{aligned}$ | SHSP Empha educe Alcohol Im crease the Use of Younger Driver/Old urb Aggressive D mprovements to A nhancing Emerge mprove Intersectio | Area (check red Driving afety Restraint Driver Safety ng <br> ess Lane Dep Medical Capa Safety | that apply) <br> for all Occupan <br> ture Crashes ilities to Increa | Survivability |
| Describe | rren | Saf | ty Issues | yste | Ranking R | iew |  |  |  |  |  |  |  |  |
| North Dakota | ashe | 200 | -2012 |  | - | - | ears |  |  |  |  |  |  |  |
| Curve ID | K | A | Radius (ft) | ADT | Intersection on Curve | Visual Trap | Risk Ranking | Oil County Project | Project Suggested | Sign Improvement Project | Shoulder Paving Project | Shoulder Rumble Strip Project | Advance <br> Horizontal <br> Alignment <br> Warning Sign | Advisory Speed Plaque |
| 023C | 0 | 0 | 3000 | 362 | No | No | $\star$ | No |  |  |  |  |  |  |
| 023D | 0 | 0 | 3200 | 362 | No | No | $\star$ | No | - |  |  |  |  | - |
| 023E | 0 | 0 | 2500 | 362 | Yes | No | * $\star$ | No | - | - | - | - | - | - |
| 023F | 0 | 0 | 1600 | 362 | No | No | $\star$ | No | - | - | - | - | - | - |
| 023G | 0 | 0 | 1300 | 362 | No | Yes | $\star \star$ | YES | - | - | - | - | - | - |
| 023H | 0 | 0 | 420 | 362 | Yes | No | * $\star$ | No | Yes | Chevron | - | Inside/Outside | x | 35 |

*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria


*Curve numbering not consecutive, as some curves may have been removed from further analysis because a large radius, located on a gravel road, etc
Ranking Criteria

|  |  |  |
| :--- | :--- | :--- | :--- |

City of Minot Urban Segment Projects - Rear End/Head On

| Corridor ID | Local Street Name | Start | End | Length | Risk Ranking | 2-Lane to 3-Lane Conv | Project Cost <br> (\$) | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 802.02 | 16th St SW | Western Ave SW | 24th Ave NW | 2.7 | $\star \star \star \star$ | 1.7 | \$ 28,917 | 4th Ave to 24th Ave |
| 808.01 | 16th Ave | 16th St SW | 13th St SE | 2.0 | $\star \star \star \star$ | 2.0 | \$ 34,000 |  |
| 809.01 | 11th Ave SE | 16th St SW | Hiawatha St SE | 1.5 | $\star \star \star \star$ | 0.75 | \$ 12,750 | Broadway St to Hiawatha St. |
| 811.02 | 3rd St NE / Airport Rd | E Burdick Expy | N Broadway | 1.9 | $\star \star \star \star$ | 1.0 | \$ 16,473 | 11th Ave to Hwy 83 |
|  |  |  |  |  |  |  |  |  |


| Ward Uriban County Corridors |  |  |  |  |  | $\begin{aligned} & \hline \text { Voume } \\ & \text { Weighted } \end{aligned}$ | Length | Speed Limit | \#Lanes | Lane Widh |  | $\begin{aligned} & \text { ral } \\ & \text { Paved Shoulder } \end{aligned}$Width | Gravel ShoulderWidth | Curb \& Guter Shoulder Type |  | ${ }_{\substack{\text { Transit } \\ \text { Route }}}^{\text {a }}$ | ${ }_{\substack{\text { Ped } \\ \text { Generator }}}$ | Descripion |  | Descripion | ( Designated Mid | On Street Bike | Primar Land Use |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coridor | Local Na | Start | End | Road Type | City |  |  |  |  |  |  |  |  |  |  | Access <br> Total <br> Access/ Mile |  |  |  |  |  |  |  |
| 800.01 | 3 T H Ave SW | 16 th St SW | SBroadway St | Urban Minor Aterial | Minot | 8,742 | 1.0 | 40 | ${ }_{5}^{5}$ | ${ }_{12}^{12}$ |  |  |  |  | Paved |  |  | Yes | Shopping | Yes |  |  |  | Commercial | 18 | 18.0 |
| 80002 | 377 Ave SE | S Broadway St | 2 nd St SE | Urban Minor Atrerial | Minot |  | 02 | ${ }_{25}^{25}$ |  | ${ }^{12}$ |  |  | 2 |  | Gravel |  |  |  |  |  |  |  | Commercial | ${ }_{13}^{13}$ | ${ }_{65.0}^{65}$ |
| ${ }^{8001.01}$ | ${ }^{\text {3/stave }}$ ( Ave SE | ${ }_{\text {S }}$ Sroadway St |  | Urban M Minoro Afteraial | Minot | ${ }_{4,175}^{6.309}$ | ${ }_{1.0}^{1.0}$ | ${ }_{25}{ }^{25}$ | ${ }^{2}$ | ${ }_{12}^{12}$ |  |  | 1 | Yes | ${ }_{\text {Pared }}$ Gravel | . | Yes | Shopping | Yes | Bike P Pah | . | . | ${ }_{\text {Conmiercal }}$ | ${ }_{34}{ }^{58}$ | ${ }_{34.0}^{58.0}$ |
| 802.01 | 16 thstsw | 37 Th Ave SW | Westem Ave SW | Urban Minor Atreial | Minot | 14,325 | 2.2 | 40 | 4 | 12 | Half | 2 |  | Yes | Paved |  | Yes | Shopping |  |  |  |  | Com | ${ }^{35}$ | 15.9 |
| 802.02 | 16 HStsw | Stem Ave SW | 24 th Ave NW | Urian M Minor Atereal | Minot | ${ }_{8}^{8,394}$ | 2.7 | ${ }_{2}^{25}$ | 4 | 12 | Haff | 2 |  | Yes | ${ }^{\text {Paved }}$ |  |  |  | Yes |  |  |  | Residential | 140 | 51.9 |
| ${ }^{803.01}$ |  | Ave | ves | Uraan Collector | Minot |  <br> 845 <br> 845 | 0.7 | ? | ${ }_{2}$ | ${ }_{12}^{12}$ |  |  | ${ }_{2}$ | Some |  |  | Yes | Foodlas |  |  |  |  | Commericial | ${ }_{23}^{22}$ |  |
| ${ }^{8050.01}$ | EkR ${ }^{\text {r }}$ | Sundown Dr | 16 th St sw | Uraan Cololecort | Minot | ${ }_{2} 2111$ | 1.1 | ${ }_{25}$ | ${ }_{2}$ | 12 |  |  | 3 |  | Gravel |  |  |  |  |  |  |  | Commercial | ${ }_{24} 2$ | ${ }_{22.8}$ |
| 806.01 | 20 th Ave SW/ Frontage Rd | EkİDive | S Broadway St | Urban Collector / Minor Atereial |  | ${ }_{7}^{7,725}$ | 1.5 | 40 | 4 | 12 | Some | 2 |  | Yes | Paved |  | Yes | Shopping |  |  |  |  | Commercial | 42 | 28.0 |
| ${ }^{806.02}$ | 20 h Ave SE/ 18 h Ave SE | S Broadway 5 t | 20 th Ave SE | Urban Collector / Minor Atereial | Minot | 4.26 | 1.7 | 40 | 5 | 12 |  | 2 |  | Yes | Pave |  | Yes | Shope | Yes |  |  |  | Commercial | ${ }^{32}$ | 18.8 |
| ${ }_{8}^{800.03}$ | 20 have SE | litht SE | US52 | Uran coliecor | ${ }_{\text {Minot }}^{\text {Minot }}$ | 1,000 | ${ }^{1.4}$ | ? | ${ }_{2}$ | ${ }_{12}^{12}$ |  |  | ${ }^{3}$ |  | Gravel |  | Yes | Shopping |  |  |  |  | Commercial | 30 15 | 21.4 |
| ${ }_{807.01}$ | 22 fit Ave SE 17 I7th St SE | Us 2 | US2 | Uraan Collector | Minot | ${ }_{480}$ | 10.9 0.9 | 25 | 2 | ${ }_{12}^{12}$ |  |  | $\stackrel{2}{2}$ |  | Gravel |  |  |  |  |  |  |  | Commercial | 16 | ${ }_{17.8}$ |
| 808.01 | 16 th Ave | 16 ht St sw | 13 lh St SE | Urian Collector | Minot | 2,903 | 2.0 | ${ }^{25}$ | 2 | 12 | . | 2 |  | Yes | Paved | . | Yes | Downtown | Yes | - |  | . | Residential | 116 | 58.0 |
|  | 11 th Ave SE | ${ }^{16 \mathrm{mb} \mathrm{St}} \mathrm{W}$ W | Hawata StSE | Urban Colececor M M Mor A Ateral | Minot |  |  |  |  |  |  |  |  |  |  |  | Yes | Downtown |  |  |  |  | Residential | ${ }^{75}$ |  |
| ${ }^{810.01}$ | 6 th St WN | W Burdick Expy | 30un Ave NW ${ }^{\text {a }}$ | Urian Colocecoror M Minoro Atererial | Minot | ${ }_{\substack{4,350 \\ 3.894}}$ | $\stackrel{1.0}{2.6}$ | ${ }_{25}^{25}$ | ${ }_{2}$ | 12 | . | ${ }_{4}^{2}$ |  | Yes | ${ }_{\text {Paved }}^{\text {Paved }}$ |  |  |  | Yes |  |  |  | $\xrightarrow{\text { Residential }}$ Residenial | ${ }_{159} 159$ | ${ }_{60.4}^{89.0}$ |
| 811.01 | 2nd St SEl 3 rd St SE | 20 th Ave SE | E Burdick Expy | Urban Collector / Minor Atereial | Minot | 4,053 | 1.6 | ${ }^{25}$ | 2 | 12 |  | 4 |  | Yes | Paved |  |  |  | Yes |  |  |  | Residential | 106 | 66.3 |
| 81.02 | 3 rd St NE / Airport Rd | E Burdick Expy |  | Urban Minor Atrerial | Minot | 6,681 | 1.9 | ${ }^{25}$ |  | 12 |  | 2 |  | Yes | Paved |  |  |  | Yes |  |  |  | Residential | 76 | 40.0 |
| 812.20 | ${ }^{13 \mathrm{thts} \text { SE }}$ | 31 stave SE | Valley St | Urban Minor Aterial | Minot | 5.498 5 5 | 1.7 20 | 30 <br> 35 <br> 3 | ${ }_{2}$ | ${ }_{12}^{12}$ | , | 2 | 2 | Yes | Gravel | , | $\cdots$ | - | Yes |  |  |  | Residential | 37 38 28 | 21.8 |
| 814.01 | US 2 Frontage Rd | 1 16th Ave SE | 55 th St SE | Uroan Collector | Minot | ${ }_{3} 38$ | 1.4 | 30 | 2 | 12 |  |  |  |  | Composite |  |  |  | Ses |  |  |  | Commercial | ${ }_{24}^{24}$ | ${ }_{17.1}$ |
| ${ }^{814.02}$ | Us 2 Frontage Rd | Eburdick Expy | End | Urran Collector | Minot | ${ }^{420}$ | 0.8 | ${ }^{25}$ | 2 | ${ }^{12}$ |  | . | 2 |  | Gravel |  |  |  |  |  |  |  | Commercial | ${ }^{33}$ | 41.3 |
| 8815.01 | ${ }_{12 \text { dind Stse }}$ | ${ }_{\text {USt }}$ 1thave SE | ${ }_{\text {E Bratick }}^{\text {Eexpy }}$ Centalave E | Urian Coloctor | ${ }_{\text {Minot }}^{\text {Minot }}$ | - $\begin{array}{r}3,198 \\ 1,851\end{array}$ | 0.5 0.9 | $\stackrel{25}{2}$ | ${ }_{2}$ | 12 | . | 4 |  | Yes | ${ }_{\text {Gravel }}^{\text {Paved }}$ |  | Yes | Downtown | Yes |  |  |  | Commercrial | ${ }_{47}^{24}$ | $\stackrel{48.0}{52 .}$ |
| 817.01 | Hiawalta St | 1 1th Ave SE $^{\text {a }}$ | Valley St | Urban Collector | Minot | 2,870 | 0.3 | 25 | 2 |  |  | 4 |  | Yes | Paved |  |  |  |  |  |  |  | Residential | 20 |  |
| 818.01 | 8th Ave SE | Valley St | E Burdick Expy | Urban Minor Atereial | Minot | 4.581 | 0.6 | ${ }^{30}$ | 2 | 12 |  |  | 6 |  | Gravel |  | - |  | - | , |  |  | Residential | ${ }^{24}$ | ${ }^{40.0}$ |
| 819.01 820.01 8 | 1 1thave SE | ${ }^{31 s t s t s t s e}$ | ${ }_{\text {42nd St SE }}$ | Uran Collector | Minot | - $\begin{aligned} & 1,753 \\ & 2.515\end{aligned}$ | 0.7 | 25 <br> 25 <br> 25 |  | ${ }_{12}^{12}$ |  |  |  |  | $\xrightarrow{\text { Gravel }}$ Cravel |  |  |  |  |  |  |  | Residitial | ${ }^{36}$ |  |
| ${ }_{8}^{82201.01}$ | US 2 Frontage Rd | 31 ststst SE |  | Urian Coliecetor | Minot | ${ }_{8}^{2.510}$ | 0.2 1.7 | $\stackrel{25}{?}$ | ${ }_{2}$ | 12 |  |  | ${ }_{3}$ | - | ${ }_{\text {cravel }}$ |  |  |  |  |  |  |  | ${ }_{\text {commercial }}$ | 46 | ${ }_{25.1}^{47.0}$ |
| 822.01 | $2{ }^{\text {nd Ave SW }}$ | 30thtst | 6 6it StNw | Urban Collector / Minor Aterial | Minot | 2.555 | 1.7 | ${ }^{25}$ | 2 | 12 |  | 6 |  | Yes | Paved |  |  |  | Yes |  |  |  | Residential | 98 | 57.6 |
| 823.01 824 80.01 | ${ }_{\text {3rd Ave SE }}^{\text {2nd Ave SW }}$ | ${ }_{\text {S Broadway St }}^{\text {W }}$ | ${ }_{\text {Front St SE }}^{\text {EBudick Exoy }}$ | Uutan Colector | ${ }_{\text {Minot }}^{\text {Minot }}$ | -1,424 <br> 2.848 | 0.5 1.0 | ${ }_{25}^{25}$ | ${ }_{2}$ | ${ }_{12}^{12}$ | . | ${ }_{6}$ | . | Yes | Paved <br> $\substack{\text { Paved }}$ | . | Yes | Downtown | Yes | . |  |  | Commercial | 36 <br> 55 | 72.0 55.0 |
| 825.01 | 1 istave | S Broadway St | ${ }^{3} \mathrm{c}$ d StsE | Urran Collector | Minot | ${ }_{1,146}$ | 0.4 | ${ }^{25}$ |  | 12 |  | 6 |  | Yes | Paved |  |  | Downtown | Yes |  |  |  | Commercial | ${ }^{25}$ |  |
| ${ }^{826.01}$ | ${ }^{\text {st St St S }}$ | E Burdick Expy | Central Ave E | Urran Collector | Minot | 1,479 | 0.3 | ${ }^{25}$ | 2 | ${ }_{12}^{12}$ | . | 12 | - | Yes | Paved | . |  | Downtown | Yes |  |  |  | Commercial | ${ }^{17}$ | 177 |
| 827.01 <br> 887.02 | Contral Ave E/ /4th Ave NE | $\frac{\text { Broaday St }}{\text { Bth StNE }}$ | ${ }_{\text {Brem }}^{\text {8thtNE }}$ | Uriban Colocecotor | ${ }_{\text {Minot }}^{\text {Ninot }}$ | $\xrightarrow{\text { 3,017 }} 1$ | 2.2 | ${ }_{35}^{25}$ | ${ }_{2}$ | ${ }_{12}^{12}$ |  | 6 | 2 | Yes | ${ }_{\text {Pared }}$ Gravel |  | Yes | Downtown | Yes |  |  |  | Commercial | 39 20 | ${ }_{91}^{19.1}$ |
| ${ }^{828.01}$ |  | 2 nd Ave NW | NBroadway | Urban Minor Atterial | Minot | 7.456 | 1.9 | 25 | 4 | 12 | . | 2 |  | Yes | Paved |  | Yes |  | Yes |  |  |  | Residential | 91 | 47.9 |
| ${ }^{828.02}$ | 4 th Ave NE/ Ith Ave NE | NBroadway |  | Urian Minor Atereal | Minot | 4,34 | 2.1 | ${ }^{25}$ |  | 12 |  |  |  | Yes | Paved |  |  |  |  |  |  |  | Residential | ${ }^{48}$ | 24.0 |
| ${ }^{823001}$ |  |  |  | Uriman Colorector ${ }^{\text {arala }}$ | ${ }_{\text {Minot }}^{\text {Minot }}$ | ${ }_{\text {O }}^{1,94}$ | ${ }_{1.2}^{1.1}$ | ${ }_{2}{ }^{2}$ | ${ }_{2}$ | ${ }_{12}^{12}$ |  | ${ }_{2}^{6}$ |  | Yes | $\xrightarrow{\text { Paved }}$ Paved |  |  |  | ¢ |  |  |  | ${ }_{\text {Residential }}^{\text {Residential }}$ | ${ }_{98}^{12}$ | - |
| 831.01 | University $A$ Ne | 16 th StNW | N Broadway | Urban Minor Atereial | Minot | 4,308 | 1.4 | ${ }^{25}$ | 2 | 12 |  | 4 |  | Yes | Paved |  |  |  | Yes |  |  |  | Residential | 109 | ${ }_{77.9}$ |
| 832.01 | 11 th Ave NW | 20 th StNW | End in Campus | Urban Collector | Minot | 1,855 | 1.1 | ${ }^{25}$ |  | 12 |  | 4 |  | Yes | Paved |  |  |  | Yes |  |  |  | Residential | 62 | 56.4 |
| 83202 83301 8 | 14th Ave NE | ${ }_{\text {Statatin }}^{\text {Us }} 83 \mathrm{mmus}$ | ${ }^{3} \mathrm{Jr}$ St NE | Uraan Collector | Minot | (1,937 | 0.6 1.9 1.9 | 25 25 | ${ }_{2}^{2}$ | ${ }_{12}^{12}$ | - | ${ }_{4}$ |  | $\underset{\text { Yes }}{\substack{\text { Yes }}}$ | $\xrightarrow{\text { Paved }}$ Paved |  |  |  | ¢ |  |  |  | Residential | ${ }_{73}^{28}$ | ${ }_{38,4}^{46.7}$ |
| 834.01 | Frontage Rd | NBroadway | 40 th Ave NW | Urian Collector | Minot | ${ }^{1,116}$ | 2.1 | ? | 2 | 12 | . | 2 |  |  | Paved |  | Yes | Gas /Food |  | . | . | . | Commercial | ${ }_{58}$ | 27.6 |
| 835.01 | ${ }^{\text {30th Ave NW }}$ | $\underbrace{\substack{\text { 34th Ave NE }}}_{\text {8th StNW }}$ | ${ }_{\text {NBroadway }}^{\text {Cly Limt }}$ | Uram Collector | ${ }_{\text {Minot }}^{\text {Minot }}$ | $\xrightarrow{1,398}$ | 0.5 0.6 | $\stackrel{35}{7}$ |  | 12 <br> 12 |  |  | ${ }_{2}^{8}$ |  | $\underset{\substack{\text { Gravel } \\ \text { Gravel }}}{ }$ |  |  |  |  |  |  |  | Residienial | 16 | $\stackrel{30.0}{26.7}$ |





Describe Current Safety Issues \& Systemic Ranking Review

|  | Value | Critical | Star Ranking |
| :---: | :---: | :---: | :---: |
| ADT: | 8,394 | $\geq 10,000$ | * |
| Major Approach Lanes: | 4 | $\geq 4$ | $\star$ |
| Access Density: | 51.851852 | 15-60 | $\star$ |
| Speed Limit: | 25 | $\leq 40$ | $\star$ |
| Severe Rear End / Sideswipe / Head On Crashes: | 0 | $\geq 1$ |  |

Describe Proposed Safety Improvements

| Description | Type | Cost per mi | Mileage $/ \#$ | Cost | Notes - 3-lane conversion |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 3-Lane Conversion | Proactive | $\$ 17,000$ | 1.7 | $\$ 28,917$ | from 4th Ave to 24th Ave |
| 5-Lane Conversion | Proactive | $\$ 22,000$ | 0.0 | $\$ 0$ |  |
| Signal Revisions | Proactive | $\$ 25,000$ | 0 | $\$ 0$ |  |





| Describe Current Safety Issues \& Systemic Ranking Review |
| :--- |
| North Dakota Crashes 2008-2012 |
|  |
|  |
|  |
| Rear End |
| Sideswipe Passing |
| Head On |

Describe Current Safety Issues \& Systemic Ranking Review

|  | Value | Critical | Star Ranking |
| ---: | :---: | :---: | :---: |
| ADT: | 5,425 | $\geq 10,000$ | $\star$ |
| Major Approach Lanes: | 3 | $\geq 4$ | $\star$ |
| Access Density: | 50 | $15-60$ | $\star$ |
| Speed Limit: | 25 | $\leq 40$ | $\star$ |
| Severe Rear End / Sideswipe / Head On Crashes: | 0 | $\geq 1$ | $\star$ |

Describe Proposed Safety Improvements

| Description | Type | Cost per mi | Mileage $/ \#$ | Cost | Notes - 3-lane conversion |
| ---: | :---: | :---: | :---: | :---: | :--- |
| 3-Lane Conversion | Proactive | $\$ 17,000$ | 0.8 | $\$ 12,750$ | from Broadway St to |
| 5-Lane Conversion | Proactive | $\$ 22,000$ | 0.0 | $\$ 0$ | Hiawatha St |
| Signal Revisions | Proactive | $\$ 25,000$ | 0 | $\$ 0$ |  |
|  |  |  |  |  |  |



| HIGHWAY SAFETY IMPROVEMENT PROGRAM (HSIP) PROJECT APPLICATION <br> North Dakota Department of Transportation Programming <br> SFN 59959 (06-2011) |
| :--- |
| 3rd St NE / Airport Rd from E Burdick Expy to N Broadway Project |

Agency Name: City of Minot
Contact Name: Stephanie Frizzo
Email Address: stephanie.frizzo@minotnd.gov

Location Description

ND DOT District: 4
Telephone Number: 701-857-4100

Please attach a location map(s). You may use additional sheets to further describe your project.
Number: 811.02
Corridor: 3 rd St NE / Airport Rd
Start: E Burdick Expy
End: N Broadway
City/Rural: Urban
County: Ward
ADT: 6681
Lanes: 2
Access Density 40
Speed Limit: 25
Length (miles): 1.9

SHSP Emphasis Area (check all that apply)
Reduce Alcohol Impaired Driving
$\square$ Reduce Alcohol Impaired Driving
$\square$ Increase the Use of Safety Restraints for all Occupants
$\square$ Younger Driver/OIder Driver Safety
$\square$ Curb Aggressive Driving
$\square$ Improvements to Address Lane Departure Crashes
$\square$ Enhancing Emergency Medical Capabilities to Increase Vilmprove Intersection Safety

Speed Limit: 25
Length (miles): 1.9


Describe Current Safety Issues \& Systemic Ranking Review

|  | Value | Critical | Star Ranking |
| :---: | :---: | :---: | :---: |
| ADT: | 6,681 | $\geq 10,000$ | $\star$ |
| Major Approach Lanes: | 2 | $\geq 4$ | ᄎ |
| Access Density: | 40 | 15-60 | $\star$ |
| Speed Limit: | 25 | $\leq 40$ | * |
| Severe Rear End / Sideswipe / Head On Crashes: | 0 | $\geq 1$ |  |

Describe Proposed Safety Improvements

| Description | Type | Cost per mi | Mileage $/ \#$ | Cost | Notes - 3-lane coversion |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 3-Lane Conversion | Proactive | $\$ 17,000$ | 1.0 | $\$ 16,473$ | from 11th Avenue to Hwy 83 |
| 5-Lane Conversion | Proactive | $\$ 22,000$ | 0.0 | $\$ 0$ |  |
| Signal Revisions | Proactive | $\$ 25,000$ | 0 | $\$ 0$ |  |



City of Minot Urban Pedestrian/Bike Project Corridors

| Corridor | Local Roadway | Adv Walk | Countdown | Curb Ext (\# of <br> corners) | Cost |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 83.01 | US 83 (20th Ave to Central Ave) | 4 | 4 | 2 | $\$$ |
| 83.02 | US 83 (4th Ave to 30th Ave NW) | 4 | 4 |  | 70,000 |
| 802.02 | 16th Street (2nd Ave to 21st Ave NW) | 2 | 2 | 4 | 40,000 |




## Intersections on S Broadway St from 20th Ave SW to Central Ave E

Agency Name: City of Minot
ND DOT District: 4
Contact Name: Stephanie Frizzo
Email Address: stephanie.frizzo@minotnd.gov
Please attach a location map(s). You may use additional sheets to further describe your project.

## Location Description

Corridor 83.01
Street Name S Broadway St
Urban/Rural: Urban
County: Ward
Corridor ADT: -

Telephone Number: 701-857-4100

| Location Description |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Corridor 83.01 <br> Street Name S Broadway St <br> Urban/Rural: Urban <br> County: Ward <br> Corridor ADT: - |  |  |  |  |  | Reduce Alcohol Impaired Driving <br> Increase the Use of Safety Restraints for all Occupants <br> Younger Driver/Older Driver Safety <br> Curb Aggressive Driving <br> $\square$ Improvements to Address Lane Departure Crashes <br> $\square$ Enhancing Emergency Medical Capabilities to Increase <br> $\square$ Improve Intersection Safety |  |  |  |  |  |
| Describe Proposed Safety Improvements |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{\|c} \text { Intersection } \\ \text { ID } \end{array}$ | Street Name | Cross Street | Taffic Control | $\begin{aligned} & \text { Enterting } \\ & \text { ADT } \end{aligned}$ | Development/ <br> Ped Generator | Total Ped/Bike Crashes | Advanced Walk | Countdown Timers | Curb <br> Exntensions | Median Refuge Island | Notes |
| 806.02 | 20th Ave SW | US 83 | Signal | 26,983 | Yes | 0 | 0 | 0 | 0 | 0 | - |
| 808.02 | 16th Ave SW | US 83 | Signal | 19,040 | Yes | 3 | 1 | 1 | 0 | 0 | - |
| 809.02 | 11th Ave SW | US 83 | Signal | 21,573 | Yes | 1 | 1 | 1 | 0 | 0 | - |
| 823.01 | 3 rd Ave SW | S Broadway St | Thru-STOP | 12,815 | Yes | 0 | 0 | 0 | 2 | 0 | - |
| 824.02 | 2nd Ave SW | S Broadway St | Signal | 14,908 | Yes | 0 |  | 1 | 0 | 0 | - |
| 825.01 | 1st Ave SW | S Broadway St | Thru-STOP | 13,945 | Yes | 0 | 0 | 0 | 0 | 0 | - |
| 827.01 | Central Ave E | S Broadway St | Signal | 13,940 | Yes | 0 | 1 | 1 | 0 | 0 | - |

Describe Current Safety Issues \& Systemic Ranking Review
North Dakota Crashes 2008-2012
5 years

| Intersection Criteria |  | Description | Unit Cost | Quanity | Total Cost |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Traffic Control Device | Signal | Advanced Walk | \$0 per intersection | 4 | \$0 |
| Entering ADT | >15,000 | Countdown Timers | \$10,000 per intersection | 4 | \$40,000 |
| Development / Ped Generator | Yes | Curb Extensions | \$15,000 per corner | 2 | \$30,000 |
| Total Ped/Bike Crashes | $>0$ | Median Refuge Island | \$10,000 per side | 0 | \$0 |
|  |  |  |  |  | \$70,000 |



Project Accepted?
Notes --
$\qquad$

Intersections on N Broadway St from 4th Ave NW to 30th Ave NW


Project Accepted?
Notes --
$\qquad$


City of Minot Urban Right Angle Crash Project Corridors

| Corridor | Local Street Name | Access Mgmt <br> ( | Confirmation <br> Lights | Cost |
| :---: | :--- | :---: | :---: | :---: |
| 83.01 | Broadway St (20th Ave to Central) |  | 5 | $\$$ |
| 83.02 | Broadway St (4th Ave to 30th Ave) |  | 4 | (465,000 |
| 802.01 | 16th Street (22nd to Hwy 2) |  | 5 | 4,000 |



| Ward County Right Angle Crash Corridor Analysis |  |  |  |  | Criteria |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Signal | $\begin{aligned} & 15,000 \\ & 25,000 \end{aligned}$ | Divided | Greater than 0 |  |  |
| Int \# | Segment \# | Local Name | Cross Street | City | Traffic Control Device | ADT | Major Config | Severe Crashes | Severe Right Angle | High Priority Corridor Candidate |
| 824.01 | 824.01 | Western Ave SW | 4th Ave SW | Minot | Thru-STOP | 6065 | Undivided | 0 | 0 |  |
| 824.02 | 824.01 | 2nd Ave SW | S Broadway St | Minot | Signal | 14908 | Undivided | 1 | 1 |  |
| 824.03 | 824.01 | 2nd Ave SE | 1st St SE | Minot | Thru-STOP | 2605 | Undivided | 0 | 0 |  |
| 824.05 | 824.01 | Front St SE | 4th Ave SE | Minot | Signal | 10268 | Undivided | 0 | 0 |  |
| 825.01 | 825.01 | 1st Ave SW | S Broadway St | Minot | Thru-STOP | 13945 | Undivided | 0 | 0 |  |
| 825.02 | 825.01 | 1st Ave SE | 1st St SE | Minot | Thru-STOP | 2315 | Undivided | 0 | 0 |  |
| 826.01 | 826.01 | 1st St SE | 4th Ave SW | Minot | Thru-STOP | 8550 | Undivided | 1 | 0 |  |
| 826.02 | 826.01 | 1st St SE | Central Ave E | Minot | Thru-STOP | 4470 | Undivided | 0 | 0 |  |
| 827.01 | 827.01 | Central Ave E | S Broadway St | Minot | Signal | 13940 | Undivided | 2 | 0 |  |
| 828.01 | 828.01 | 4th Ave NW | 20th St NW | Minot | Thru-STOP | 7130 | Undivided | 0 | 0 | YES |
| 828.02 | 828.01 | 4th Ave NW | N Broadway St | Minot | Signal | 19748 | Undivided | 2 | 0 | YES |
| 828.03 | 828.02 | 4th Ave NW | 5th Ave NE | Minot | Thru-STOP | 5530 | Undivided | 0 | 0 |  |
| 830.01 | 830.01 | 20th St NW | Northwest Ave NW | Minot | Thru-STOP | 1638 | Undivided | 0 | 0 |  |
| 831.01 | 831.01 | University Ave W | N Broadway St | Minot | Signal | 16680 | Undivided | 1 | 1 | YES |
| 832.01 | 832.02 | 11th Ave NW | N Broadway St | Minot | Signal | 13290 | Undivided | 0 | 0 |  |
| 833.01 | 833.01 | 21st Ave NW | US 83 | Minot | Thru-STOP | 8300 | Undivided | 0 | 0 |  |
| 833.02 | 833.01 | 21st Ave NW | Frontage Rd | Minot | Thru-STOP | 5000 | Undivided | 0 | 0 |  |
| 833.03 | 833.01 | 21st Ave NW | N Broadway St | Minot | Thru-STOP | 9708 | Divided | 0 | 0 |  |
| 834.01 | 834.01 | 2nd St NW | N Broadway St | Minot | Thru-STOP | 9873 | Divided | 1 | 0 |  |
| 835.01 | 835.01 | 30th Ave NW | Frontage Rd | Minot | Yield | 2097 | Divided | 0 | 0 |  |
| 835.02 | 835.01 | 30th Ave NW | US 83 | Minot | Thru-STOP | 7575 | Divided | 0 | 0 |  |

## Intersections on S Broadway St from 20th Ave SW to Central Ave E

Agency Name: City of Minot
Contact Name: Stephanie Frizzo
Email Address: stephanie.frizzo@minotnd.gov

Please attach a location map(s). You may use additional sheets to further describe your project.
Location Description

SHSP Emphasis Area (check all that apply)
$\square$ duce Alcohol Impaired Driving
$\square$ rease the Use of Safety Restraints for all Occupants
$\square$ unger Driver/Older Driver Safety
$\square \mathrm{rb}$ Aggressive Driving
$\square$ provements to Address Lane Departure Crashes
$\square$ hancing Emergency Medical Capabilities to Increase
$\square$ prove Intersection Safety

Describe Proposed Safety Improvements

| Intersection ID | Street Name | Cross Street | Config | Taffic Control | Enterting ADT | Major Config | Severe Crashes | Severe RA Crashes | Confirmation Lights | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 806.02 | 20th Ave SW | US 83 | X | Signal | 26,983 | Divided | 4 | 1 | 1 | - |
| 808.02 | 16th Ave SW | US 83 | X | Signal | 19,040 | Undivided | 2 | 0 | 1 | - |
| 809.02 | 11th Ave SW | US 83 | X | Signal | 21,573 | Undivided | 1 | 0 | 1 | - |
| 823.01 | 3rd Ave SW | S Broadway St | T | Thru-STOP | 12,815 | Undivided | 0 | 0 | 0 | - |
| 824.02 | 2nd Ave SW | S Broadway St | X | Signal | 14,908 | Undivided | 1 | 1 | 1 | - |
| 825.01 | 1st Ave SW | S Broadway St | X | Thru-STOP | 13,945 | Undivided | 0 | 0 | 0 | - |
| 827.01 | Central Ave E | S Broadway St | T | Signal | 13,940 | Undivided | 0 | 0 | 1 | - |

Describe Current Safety Issues \& Systemic Ranking Review


| Page: | 1 |
| ---: | :---: |
| Intersection ID: | 83.01 |
| Date: | $11 / 21 / 2013$ |

Intersections on N Broadway St from 4th Ave NW to 30th Ave NW

Agency Name: City of Minot
Contact Name: Stephanie Frizzo
Email Address: stephanie.frizzo@minotnd.gov
Please attach a location map(s). You may use additional sheets to further describe your project.
Location Description

## Corridor 83.02

Street Name N Broadway St
Urban/Rural: Urban
County: Ward

Length -

ND DOT District: 4
Telephone Number: 701-857-4100

| Location Description |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Corridor 83.02 <br> Street Name N Broadway St Urban/Rural: Urban <br> County: Ward Length - |  |  |  |  | SHSP Emphasis Area (check all that apply) <br> $\square$ duce Alcohol Impaired Driving <br> $\square$ rease the Use of Safety Restraints for all Occupants <br> $\square$ unger Driver/Older Driver Safety rb Aggressive Driving provements to Address Lane Departure Crashes hancing Emergency Medical Capabilities to Increase $\square$ prove Intersection Safety |  |  |  |  |  |
| Describe Proposed Safety Improvements |  |  |  |  |  |  |  |  |  |  |
| Intersection ID | Street Name | Cross Street | Config | Taffic Control | Enterting ADT | Major Config | Severe Crashes | Severe RA Crashes | Confirmation Lights | Notes |
| 828.02 | 4th Ave NW | N Broadway St | X | Signal | 19,748 | Undivided | 2 | 0 | 1 | - |
| 831.01 | University Ave W | N Broadway St | X | Signal | 16,680 | Undivided | 1 | 1 | 1 | - |
| 832.01 | 11th Ave NW | N Broadway St | X | Signal | 13,290 | Undivided | 0 | 0 | 1 | - |
| 834.01 | 2nd St NW | $N$ Broadway St | T | Thru-STOP | 9,873 | Divided | 1 | 0 | 0 | - |
| 811.09 | Airport Rd | US 83 | X | Signal | 11,970 | Divided | 0 | 0 | 1 | - |
| 833.03 | 21st Ave NW | N Broadway St | T | Thru-STOP | 9,708 | Divided | 0 | 0 | 0 | - |
| 835.02 | 30th Ave NW | US 83 | T | Thru-STOP | 7,575 | Divided | 1 | 0 | 0 | - |

Describe Current Safety Issues \& Systemic Ranking Review

Intersection ID: 83.02
Date: 11/11/2013

# Right Angle Crashes @ Signals Intersection Improvements <br> Intersections on 37th Ave SW from 16th St SW to S Broadway St 

Agency Name: City of Minot
Contact Name: Stephanie Frizzo
Email Address: stephanie.frizzo@minotnd.gov
Please attach a location map(s). You may use additional sheets to further describe your project.
Location Description
Corridor 800.01
Street Name 37th Ave SW
Urban/Rural: Urban

> County: Ward

Length 1.0

ND DOT District: 4
Telephone Number: 701-857-4100


Describe Current Safety Issues \& Systemic Ranking Review

Intersection ID: 800.01
Date: $11 / 11 / 2013$

### 5.0 Behavioral Safety Strategies

### 5.1 Purpose of Driver Behavior Safety Strategies

North Dakota's Local Road Safety Program (LRSP) recognizes that driver behavior is a significant factor contributing to a majority of the severe crashes on North Dakota's local roads. Traffic crashes may result from any combination of overlapping crash factors, such as the roadway, the vehicle, and driver behavior. Research supports and experts agree that in most cases driver behavior - risky decisions, driver error, lapses of attention, and driver limitations is a chief factor contributing to traffic crashes (Lerner et al., 2010). Severe traffic crashes in North Dakota's Ward County can be largely prevented and reduced if motorists were persuaded to engage in key safe driving practices to buckle up, drive at safe speeds, pay attention, and plan ahead to avoid impaired driving. For maximum safety benefit, these measures should be undertaken in addition to adopting infrastructure safety strategies to help ensure the safest and most forgiving roadway possible.

### 5.2 Overview of Behavioral Crash Data for Ward County

Unbelted Vehicle Occupants: Traffic safety research demonstrates that a motorist's seat belt is the most effective defense in the event of a crash. When lap and shoulder seat belts are used, the risk of fatal injury to front-seat passenger car occupants is reduced by 45 percent and the risk of moderate-to-critical injury is reduced by 50 percent (NHTSA, 2001). Safety benefits are even greater for light-truck occupants, with seat belts reducing fatalities by 60 percent and moderate-to-critical injury by 65 percent (NHTSA, 2009). North Dakota's 2013 statewide seat belt use is 77.7 percent; lower than the nationwide use of 86 percent. Unbelted severe crashes are Ward County's greatest opportunity to strengthen road safety through improving driver behavior. The trend of severe unbelted crashes is increasing statewide. Ward County is below the 48 percent statewide-unbelted severe crashes with 39 percent of the county's severe crashes involving unbelted motorists.

Alcohol-Related Crashes: Nationally, although impaired driving fatalities have decreased since 2007, the percentage of alcohol-impaired fatalities in the U.S. has remained essentially unchanged (NHTSA, 2012a). Similarly, over the last decade, each year nearly half of motor vehicle fatalities statewide in North Dakota continue to be alcohol-related. In Ward County, 22 percent of the county's severe crashes are alcohol-related - lower than the statewide 30 percent. From statewide crash data, nearly half of these preventable severe crashes are on the local road system.

Young Driver-Involved: Young drivers have the highest involvement in fatal crashes of any age group. The fatal crash involvement of drivers age 16 to 20 is nearly twice that of drivers' age 21 and older (NHTSA, 2012b). Key underlying factors to their high crash risk are the developmental and behavioral issues of adolescence coupled with driving inexperience. Young drivers too often immaturely take risks while driving without thinking through the potential consequences of their life-threatening decisions (Keating, 2007). Such high-risk behaviors typically include lack of seat belt use, aggressive driving/speeding, and distractions while driving. Although severe injury crashes involving young drivers have gradually declined statewide, young drivers under the age of 21 continue to be overrepresented in crashes with

67 percent occurring on local roads. In Ward County, 30 percent of severe crashes involve young drivers, which is higher than the 22 percent of statewide severe crashes.

Excessive Speed or Aggressive Driving: Speeding is common and is a tough nut to crack nationally and in North Dakota. Although drivers generally acknowledge that speeding is an unsafe behavior, speeding remains common because the perceived risk of injury is low relative to the perceived benefits of driving fast such as saving time and driving pleasure (Lerner et al., 2010). Consequently, the percentage of speeding-related fatal crashes has remained essentially unchanged over the years and remains a contributing factor in 31 percent of traffic fatalities in the U.S. (NHTSA, 2012c). Speeding and aggressive driving continue to account for approximately 26 percent of all severe crashes in North Dakota with 62 percent of these crashes occurring on the local road system. In Ward County, 25 percent of its severe crashes involve speed or aggressive driving, which is similar to the statewide percentage of 26 percent.

### 5.3 Importance of Traffic Safety Culture Change

### 5.3.1 The Influence of Traffic Safety Culture

In adopting North Dakota's long-term vision of zero fatalities, the 2013 North Dakota SHSP establishes a collective goal to reduce the 3-year average of traffic fatalities to 100 or fewer by 2020. To accomplish this interim goal, Ward County, together with its traffic safety partners, seeks to develop and implement its LRSP safety strategies within the broader societal context of motorists' behavior and North Dakota's traffic safety culture. Traffic safety culture can be defined as the implicit shared values, beliefs, and perceptions that shape motorists' behavior.

### 5.3.2 Social Norms Inhibiting a Strong Traffic Safety Culture

At the core of the nation's and North Dakota's traffic safety challenge is a complacency toward risk-taking by drivers and a tolerance for traffic crashes and the resulting deaths and serious injuries. Contributing factors include a sense of individual driver invulnerability, perceived driving skills and vehicle control, and a sense of anonymity and entitlement on the road. The latest data from the 2012 Traffic Safety Culture Index Survey reports that, as in previous years, the safety culture in the United States surrounding distracted driving can best be described as "do as I say, not as I do" - due to the high numbers of people who object to certain behaviors, yet will admit that they, themselves, engage in them (AAA, 2012). Real progress in traffic safety depends largely on addressing and changing this culture of indifference to effectively implement and see results of both SHSP and LRSP safety strategies.

### 5.3.3 Social Levels Influencing Safety Culture

Efforts to change individual driver and motorist behaviors should be planned and executed from an ecological viewpoint - one that examines the driving public and their interaction with their social environments. Traffic safety culture and its influence operate at different levels within society. Therefore, a broader definition of traffic safety culture includes the values, beliefs, and perceptions of not only the individual driver, but of those shared by the various communities of which the driver is a part (Figure 5-1). The individual driver exists within a system that includes the following levels, each embodying factors that influence driving culture and crash risk (Ward et al., 2010; Dahlberg and Krug, 2002):

- Individual level - Factors such as driver age, driving experience, self-esteem, income, and substance abuse
- Relationship level - Factors such as relationships with peers, co-workers, supervisors, and family members
- Community level - Factors include the settings or environments in which relationships occur such as school, church, workplaces, and neighborhoods
- Societal level - Large-scale factors such as safety, health, economic, and educational policies, as well as government commitments and priorities


FIGURE 5-1
Social Ecological Perspective of Culture
Source: "Violence - A Global Public Health Problem" by L.L. Dahlberg and E.G. Krug, in World
Report on Violence and Health (World Health Organization)

Social norms at each level and within each group point to what behaviors are perceived as important. Norms create conformity to expectations that allows people (that is, drivers) to successfully socialize to the subcultures in which they belong. These norms create a climate in which unsafe driving behavior is either encouraged or discouraged. Perceived social norms condoning high-risk driving behaviors provide the case for drivers to rationalize their own high-risk behaviors. To accomplish the culture change, traffic safety behavioral strategies seek to make safe-driving behaviors the accepted norm across all social ecological levels.

The implication of the social ecological model for LRSP efforts is that the implementation plans of LRSP strategies plans should attempt to:

- Increase perceived social pressure to comply with traffic safety laws and practices, thereby, producing safety behavioral norms (Ward et al., 2010)
- Shift the social acceptance of high-risk behaviors to one of perceived unacceptance by significant others and one's peers.


### 5.4 Behavioral Safety Strategies

### 5.4.1 Role of Policy, Education, and Enforcement

Techniques or strategies to change driver behavior essentially fall into one of three categories: 1) policy change or laws, local ordinances, regulations, sanctions and penalties; 2) enforcement of the laws; and 3) education or public information, media, and training. These three categories of behavioral safety strategies work together to have the greatest impact on changing risky driver behavior. The degree of effectiveness of any one strategy on behavioral change depends not only on how effectively the strategy is implemented, but also on how these three categories of policy, enforcement, and education are working together.

For example, a state or local agency that is seeking to increase motorists' seat belt use and decides to use a "buckle up" public information campaign (behavioral change strategy). The effectiveness of the campaign not only depends on the quality of the education or public information campaign (relevance to target group, duration, saturation of the messaging), but also the strength of the law in place (primary vs. secondary seat belt law, all passengers vs. front seat only, higher penalty/fee vs. low penalty/fee) and, most important, the degree of seat belt use enforcement (coverage, intensity, visible by the public).

Consequently, the strength of driver safety policy, enforcement, and education surrounding a behavioral strategy selected greatly impact its effectiveness. Therefore, when selecting and implementing a behavioral strategy, an agency must examine the policy, enforcement, and educational context of the strategy and explore ways to strengthen each, as appropriate, to gain the most from a selected strategy.

Finally, it is critically important that traffic safety enforcement is viewed as a priority within local law enforcement agencies and that agency leaders and administrators advocate for strong local enforcement of traffic laws. It is imperative that agency leaders actively address political and public resistance and provide a pathway to deploy the leading strategy to save lives on North Dakota roadways - effective traffic enforcement coupled with public outreach. By advocating for enforcement, educating local elected officials, and equipping officers to effectively enforce traffic safety laws, North Dakota will reap far greater life-saving outcomes from its local safety initiatives.

### 5.4.2 Effective Use of Public Information Strategies

Public information (education) strategies are often popular among communities seeking to change risky driving behaviors. Education or public information campaigns can range from brochures and mailings to peer-to-peer safety messaging. Brochures and mailings are a passive approach, while peer-to-peer messaging provides a more effective behavioral change approach. In general, a key challenge in influencing driver behavior is that most drivers know what they are supposed to do to drive safely, yet due to successfully driving with risky patterns with no incidence of crash, drivers underestimate the risk of their choices. For this reason, research supports that education, coupled with enforcement, will have the strongest impact in changing driver behavior (NHTSA, 2013).

Following are key characteristics of impactful public information/education campaigns (Williams, 2007):

- Implemented in support of a high-visibility enforcement program
- Focused messaging for a target group
- Longer-term programs delivering messages of sufficient intensity over time
- Messages communicating new information not previously well known
- Messages that are part of a broader-based, longer-term community program with similar messaging coming from multiple sources
- Using behavior change models including interactive methods teaching skills to resist social pressure (such as role playing, group discussion)


### 5.4.3 LRSP Phase 1 Priority Strategies

During the LRSP workshop, participants reviewed Ward County's behavioral crash data and discussed behavioral safety strategy alternatives that could be implemented at the local level. Out of the strategy review discussions, participants engaged in a prioritization process with six strategies emerging as the preferred local behavioral safety strategies for the four behavioral critical emphasis areas. Table 5-1 reflects the LRSP Phase 1 results of the strategy prioritization, as well as each strategy's alignment with the North Dakota SHSP (indicated by an " X " if included in the SHSP).

TABLE 5-1
North Dakota Phase 1 LRSP Workshop Priority Behavioral Strategies and Relationship with the North Dakota SHSP

| Phase 1 LRSP Workshop Priority Behavioral Strategies and Their Relationship with the North Dakota SHSP |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Impaired Driving |  |  |  |  |
| - Conduct regular high-visibility DUI enforcement saturations | X | X | X | X |
| Speeding and Aggressive Driving |  |  |  |  |
| - Conduct high-visibility targeted enforcement of speeding and aggressive driving <br> - Note: Added speed and aggressive driving enforcement strategies to support priority infrastructure safety strategies include: <br> - Provide enhanced enforcement to support local agency implementation of Red-Light-Running confirmation lights for at-risk intersection locations. <br> - Provide enhanced enforcement on local, at-risk locations for lane departure. | X | X | X | X |
| Young Drivers |  |  |  |  |
| - Publicize and conduct a high-visibility enforcement of GDL restrictions, cell and texting laws, underage drinking and driving, and seatbelt laws |  |  | X | X |
| - Encourage driver education providers (local schools and private providers) to require parent education component | X | X |  | X |
| - Conduct brief interventions by health care providers following a crash regarding driving risks and consequences |  |  | X | X |
| Unbelted Occupants |  |  |  |  |
| - Conduct highly publicized enforcement campaigns to maximize restraint use. | X | X | X | X |
| Note: <br> DUI = driving under the influence <br> GDL = graduated driver's license |  |  |  |  |

The following subsections provide a more complete description of each priority strategy, suggested steps to launch local agency efforts, recommended implementation resources, and potential future considerations for expanded local agency and community-based support for the SHSP safety strategies. It is important to note that multidisciplinary SHSP implementation teams will be formed to support the implementation of priority strategies for each of the six

SHSP priority emphasis areas including: lane departure, unbelted vehicle occupants, alcoholrelated, speed or aggressive drivers, young drivers, and intersections. Therefore, local agencies seeking to leverage local-level safety initiatives described in the following subsections are encouraged to coordinate with and/or engage in the statewide SHSP implementation teams.

### 5.4.4 Impaired Driving

## Ward County Priority Strategy - Conduct regular high-visibility DUI enforcement saturation patrols (includes expanding DUI sobriety checkpoints)

Description: High-visibility DUI enforcement is a high-priority, proven safety strategy to reduce alcohol-impaired severe crashes in North Dakota and across the nation. The most effective way to deter impaired driving is through a highly visible enforcement effort to reinforce the driving public's belief that impaired drivers are at high risk of being arrested, prosecuted, and adjudicated. High-visibility enforcement consists of multiple jurisdictions and/or multiple squads patrolling a segment of roadway at the same time, often using brightly colored vests and signs. Planned enforcement is publicized extensively through community kickoff events involving the local media and public education campaigns about the enforcement. High visibility also includes enforcement agencies reporting to news media the outcome or arrests made during the saturation or checkpoint campaign. In addition to deterring driving after drinking by increasing the perceived risk of arrest, high-visibility enforcement extends the safety impact of the enforcement campaign for a longer period following the campaign.

## What are saturation patrols?

Saturation patrols, also known as "dedicated DUI patrols," are stepped-up enforcement involving a greater number of law enforcement officers patrolling a specific area for a set time to identify and arrest impaired drivers. Multiple agencies often combine and concentrate their resources to conduct saturation patrols.

## What are sobriety checkpoints?

At sobriety checkpoints, law enforcement officials evaluate drivers for signs of alcohol or drug impairment at certain points on the roadway. Vehicles are stopped in a specific sequence, such as every other vehicle or every fourth, fifth, etc. The frequency of which vehicles are stopped depends on the traffic conditions and the number of enforcement personnel available to staff the checkpoint.

## Getting Started:

- Contact the Traffic Safety Office (TSO) to participate in the SHSP process as a stakeholder in the implementation of strategies identified for priority safety emphasis areas, such as impaired driving, in the SHSP.
- Assist local law enforcement agencies and Regional DUI Task Forces with identifying locations with high crash involvement for high-visibility enforcement.
- With local law enforcement, attend county board/city council meetings to speak on the importance of reducing impaired driving and the important role of both enforcement and engineering safety strategies.
- Collaborate with highway patrol, local law enforcement, community health officials, and local traffic safety stakeholders to use TSO DUI campaign materials to conduct community outreach on the enforcement campaign.


## Implementation Resources:

- For crash data and analysis to focus DUI enforcement efforts, contact the NDDOT Traffic Safety Office (TSO) at (701) 328-4692.
- To learn about Regional DUI Task Forces and other local traffic safety enforcement activities and enforcement grant opportunities, contact the TSO.
- See Section 5.5, Traffic Safety Office Supporting Resources.
- For statewide impaired driving enforcement mobilizations, the TSO distributes media outreach materials to local enforcement agencies which may include: press releases, talking points, camera-ready artwork and posters, impaired driving fact sheets, handouts for the public at checkpoints, a print public service announcement (PSA), and live-read radio PSAs. (Note: TSO to assemble available information resources.)
- For guidance on planning and publicizing saturation patrols and sobriety checkpoints:

Saturation Patrols \& Sobriety Checkpoints: A How-to Guide for Planning and Publicizing
Impaired Driving Enforcement Efforts, NHTSA, Report No. DOT HS 809 063, revised October 2002.
http://www.nhtsa.gov/people/injury/alcohol/saturation_patrols/
Low-Staffing Sobriety Checkpoints. NHTSA, Report No. DOT HS 810 590, 2006. http://www.nhtsa.gov/people/injury/enforce/LowStaffing_Checkpoints/

- Other impaired-driving safety resources:

National Highway Traffic Safety Administration: http://www.nhtsa.gov/Impaired
Governor's Highway Safety Administration:
http://www.ghsa.org/html/issues/impaireddriving/index.html
Insurance Institute for Highway Safety:
http://www.iihs.org/research/topics/alcohol_drugs.html

## Potential future considerations for expanded local agency and community-based support of SHSP impaired-driving safety strategies:

- Engage local safety stakeholders (law enforcement, Mothers Against Drunk Driving [MADD], Students Against Drunk Driving [SADD], North Dakota Safety Council, community health provider, emergency medical service providers) and facilitate coalition development to educate local elected officials on the importance of state agency impaireddriving legislative initiatives resulting from the state's comprehensive assessment of North Dakota impaired-driving laws.
- Conduct community-wide and sustained public information outreach to educate and create cultural awareness of the risks associated with excessive alcohol use.
- Develop and conduct local public outreach on accessible safe-ride alternative transportation services.
- Conduct highly publicized compliance checks and training for local alcohol retailers and merchants to reduce sales to underage persons.


## Other high-impact, proven strategies for local agency consideration:

- Monitor judicial sentencing of local DUI courts or intensive supervision programs.


### 5.4.5 Young Drivers

Ward County Priority Strategy - Publicize and conduct high-visibility enforcement of teen driver Graduated Driver's Licensing (GDL) restrictions, no teen cell phone use and texting-while-driving laws, no underage drinking and driving, and seatbelt use laws.
Description: See Section 5.4.4 for a description of high-visibility/highly publicized enforcement campaigns.

To the extent that teen drivers do not comply with the protective restrictions under North Dakota's GDL system and its Zero Tolerance for drinking laws, traffic safety benefits of these laws will be greatly reduced. Compliance with restrictions can be encouraged through steppedup enforcement efforts such as checkpoints and saturation patrols coupled with publicity to raise awareness for the enforcement.

North Dakota law enforcement agencies (state, county, city and tribal) participate in highvisibility enforcement programs coordinated at the regional level using a data-driven, multiagency approach. Such inter-agency cooperation deploys a strategic approach to supporting smaller agencies with low officer staffing by increasing enforcement presence for seat belt, impaired driving, and speed enforcement campaigns which include drivers under the age of 20. In addition, underage-drinking enforcement is conducted during peak youth high-risk time periods such as prom and graduation. Underage drinking enforcement also includes retail compliance check programs to monitor the selling of alcohol to minors. Finally, law enforcement agencies conduct overtime high-visibility enforcement of North Dakota's notexting law in areas more prominently impacted by distracted driving-related severe injury crashes.

## Getting Started:

- Contact the Traffic Safety Office (TSO) to participate in the SHSP process as a stakeholder in the implementation of strategies identified for priority safety emphasis areas, such as young drivers, in the SHSP.
- Assist local law enforcement agencies and regional enforcement teams with identifying locations with high young driver crash involvement for high-visibility enforcement.
- Explore with local law enforcement the use of enforcement checkpoints held near high schools during lunchtime, after school, or after school sporting events and activities to enforce safety belt laws and passenger restrictions.
- With local law enforcement, attend county board/city council meetings to speak about the importance of reducing young driver severe crashes through high visibility enforcement.
- Collaborate with highway patrol, local law enforcement, community health officials, and local traffic safety stakeholders to use TSO traffic safety materials to conduct community outreach on young driver risks together with messaging about upcoming traffic safety enforcement campaigns.
- Work with local businesses to provide rewards and incentives to law enforcement, like discount coupons, to distribute to young drivers who are paying attention to the road (not their phones) and demonstrating safe driving behaviors.


## Implementation Resources:

- For information on high-visibility enforcement implementation resources, see Section 5.4.4 for alcohol enforcement and Section 5.4.6 unbelted enforcement.
- For age-specific information and resources for parents on how to start and continue the conversation about alcohol use with their children, see the North Dakota's Parents LEAD program (Listen, Educate, Ask, Discuss).
http://www.parentslead.org/
- To launch a comprehensive local distracted driving outreach campaign to support law enforcement's high-visibility efforts, see NHTSA's Districted Driving Campaign Starter Kit: One Text or Call Could Wreck It All. http://www.distraction.gov/download/campaignmaterials/dd_campaign_starter_kit.pdf


## Considerations for future expanded local agency/community support of ND SHSP young driver safety strategies:

- Engage local traffic safety stakeholders (law enforcement, school administrators, driving schools, insurance companies, community health providers, emergency medical service providers) and facilitate coalition development to educate local elected officials on the importance of state agency GDL and teen driver safety policy initiatives.


## Other high-impact strategies for local agency consideration:

- Conduct locally facilitated peer-to-peer driver safety outreach campaigns designed for high school students to raise peer awareness of the common risk factors threatening novice drivers.
- Implement cell phone use and safe driving policies for local agency employees and encourage local businesses to do the same.


## Ward County Priority Strategy - Conduct brief interventions by health care providers following a crash regarding driving risks and consequences

Description: Following a car crash, brief interventions by trauma care providers capitalize on the "teachable moment" during the treatment of a patient's injuries in which he or she is more motivated to change risky driving behavior. In the context of highway safety, brief interventions most commonly are short, 10 - to 15 -minute motivational interviews involving an initial screening or a structured set of questions and a brief follow-up discussion that encourage drinking drivers to create a plan of action, from reducing their drinking to seeking substance abuse treatment, based on their willingness to change their drinking behavior. The discussion involves a non-threatening approach that provides feedback in a non-threatening manner. North Dakota's Ward County seeks to expand the application of brief interventions by trauma and health care providers to include high-risk behaviors most often practiced by young drivers such as lack of belt use, speeding/aggressive driving, and distracted driving.
The consequences of traffic crashes involve injury and care issues greatly impacting North Dakota and its local communities; however, organizations dedicated to health care do not always recognize the important role they play in contributing to the reduction of high-risk driving behaviors. The promotion of brief interventions performed by trauma care providers can be an effective strategy to help improve traffic safety at the local level.

## Getting Started:

- Contact the Traffic Safety Office (TSO) to participate in the SHSP process as a stakeholder in the implementation of strategies identified for priority safety emphasis areas, such as young drivers, in the SHSP.
- Collaborate with local health and trauma care providers and community-based traffic safety groups to assist with launching traffic safety brief intervention approach (see implementation resources below).


## Implementation Resources:

- For assistance with identifying local community partners and health/trauma care providers, contact the NDDOT Traffic Safety Office (TSO) at (701) 328-4692.
- See Section 5.5, Traffic Safety Office Supporting Resources.
- For guidance on developing and implementing brief interventions:

Alcohol and Highway Safety: Screening and Brief Intervention for Alcohol Problems as a Community Approach to Improve Traffic Safety, NHTSA, Technology Transfer Series, Report No. DOT HS 811 811, September 2013. http://www.nhtsa.gov/About+NHTSA/Traffic+Techs

Screening and Brief Intervention Tool Kit for College and University Campuses, NHTSA, Report No. DOT HS 810751
http://www.nhtsa.gov/links/sid/3672Toolkit/index.htm

### 5.4.6 Unbelted

## Ward County Priority Strategy - Conduct highly publicized enforcement campaigns to maximize restraint use

Description: See Section 5.4.4 for a description of high-visibility/highly publicized enforcement campaigns.

North Dakota law enforcement agencies (state, county, city and tribal) participate in the state's Click It or Ticket mobilization program to boost seat belt use and reduce highway fatalities through stepped up enforcement of unrestrained occupants, The mobilization is supported by national and local paid advertising and earned media campaigns aimed at raising awareness before the enforcement saturation. Click It or Tick It takes place each year in May around the Memorial Day holiday. North Dakota has increased its focus on nighttime seat belt use because fewer motorists buckle up at night.

## Getting Started:

- Contact the Traffic Safety Office (TSO) to participate in the SHSP process as a stakeholder in the implementation of strategies identified for priority safety emphasis areas, such as unbelted crashes, in the SHSP.
- Assist local law enforcement agencies with identifying locations with high unbelted crash involvement for high-visibility enforcement.
- With local law enforcement, attend county board/city council meetings to speak on the importance of enforcing belt use.
- Collaborate with highway patrol, local law enforcement, community health officials, and local traffic safety stakeholders to use TSO belt use campaign materials to conduct community outreach on the enforcement campaign.


## Implementation Resources:

- For crash data and analysis to focus seat belt enforcement efforts, contact the NDDOT Traffic Safety Office (TSO) at (701) 328-4692.
- To learn about local traffic safety enforcement activities and enforcement grant opportunities, contact the TSO.
- See Section 5.5, Traffic Safety Office Supporting Resources.
- For statewide belt use mobilizations, the TSO distributes media outreach materials to local enforcement agencies which may include: press releases, talking points, camera-ready artwork and posters, belt-use fact sheets, a print public service announcement (PSA), and live-read radio PSAs. (Note: TSO to assemble available information resources.)
- For guidance on planning and publicizing belt-use saturation patrols:

NHTSA 2013 national seat belt enforcement Products for Enforcement Action Kit (PEAK) to help enforcement rally officers and alert the public to prepare for maximum high-visibility seat belt enforcement during the day and also at night.
http://www.trafficsafetymarketing.gov/CIOT-PEAK

Nighttime Enforcement of Seat Belt Laws: An Evaluation of Three Community Programs, NHTSA, Report No. DOT HS 811 189, August 2009.

Innovative Seat Belt Demonstration Programs in Kentucky, Mississippi, North Dakota, and Wyoming, NHTSA, Report No. DOT HS 811 080, March 2009.

Avoiding "Tween" Tragedies: Demonstration Project to Increase Seat Belt Use Among 8- to 15-year-old Motor Vehicle Occupants, NHTSA, Report No. DOT HS 811 096, June 2012.

For the above and other belt enforcement and information outreach resources: http://www.nhtsa.gov/Driving+Safety/Occupant+Protection

- Other seat-belt safety resources:

Governor's Highway Safety Administration:
http://www.ghsa.org/html/issues/occprotection/index.html
Insurance Institute for Highway Safety:
http://www.iihs.org/iihs/topics/t/safety-belts/topicoverview

Potential future considerations for expanded local agency, tribal and community-based support of SHSP safety strategies:

- Pursue tribal ordinances for primary enforcement of seat belt laws.
- Engage local safety stakeholders (law enforcement, Mothers Against Drunk Driving [MADD], Students Against Drunk Driving [SADD], North Dakota Safety Council, community health provider, emergency medical service providers) and facilitate coalition
development to educate local elected officials on the importance of state agency primary seat belt legislative initiatives.
- Conduct community-wide and sustained public information outreach to educate and create cultural awareness of the risks associated with unbelted motorists.


### 5.4.7 Speed and Aggressive Driving

## Ward County Priority Strategy - Conduct highly publicized and targeted speed and aggressive driving enforcement campaigns

Description: See Section 5.4.4 for a description of high-visibility/highly publicized enforcement campaigns.
North Dakota law enforcement agencies (state, county, city and tribal) participate in the state's Ticketing Aggressive Cars and Trucks (TACT) program to reduce speed-related fatalities and severe injuries through stepped up enforcement of aggressive cars and trucks primarily in oilimpacted counties. For aggressive driving enforcement, officers focus on drivers who commit a combination of moving traffic violations such speeding, following too closely, running red lights, which endangers other persons or property.

## Getting Started:

- Contact the Traffic Safety Office (TSO) to participate in the SHSP process as a stakeholder in the implementation of strategies identified for priority safety emphasis areas, such as speeding, in the SHSP.
- Assist local law enforcement agencies with identifying locations with high speed and aggressive driving-related crash involvement for high-visibility enforcement.
- With local law enforcement, attend county board/city council meetings to speak on the importance of enforcing speed and aggressive driving.
- Collaborate with highway patrol, local law enforcement, community health officials, and local traffic safety stakeholders to use TSO speed campaign materials to conduct community outreach on the enforcement campaign.


## Implementation Resources:

- For crash data and analysis to focus speed enforcement efforts, contact the NDDOT Traffic Safety Office (TSO) at (701) 328-4692.
- To learn about local traffic safety enforcement activities and enforcement grant opportunities, contact the TSO.
- See Section 5.5, Traffic Safety Office Supporting Resources.
- For guidance for law enforcement on planning and publicizing local speed saturation patrols and successful case examples, see NHTSA's Guidelines for Developing a Municipal Speed Enforcement Program at:
http:/ /www.nhtsa.dot.gov/ people/injury/enforce/ program.htm
- For a summary of successful aggressive driving enforcement programs deployed at the local and state-level across the country, see NHTSA's (2001 b) Aggressive Driving Enforcement: Strategies for Implementing Best Practices at:
http://www.nhtsa.gov/people/injury/enforce/aggressdrivers/aggenforce/
- Other speed-related safety resources:

Governor's Highway Safety Administration:
http://www.ghsa.org/html/issues/ speeding.html
Insurance Institute for Highway Safety:
http://www.iihs.org/iihs/topics/t/speed/topicoverview

## Potential future considerations for expanded local agency, tribal and community-based support of SHSP safety strategies:

- Engage local safety stakeholders (law enforcement, Mothers Against Drunk Driving [MADD], Students Against Drunk Driving [SADD], North Dakota Safety Council, community health provider, emergency medical service providers) and facilitate coalition development to educate local elected officials on the importance of state agency legislative initiatives to strengthen penalties such as increased fines for right-of-way and speed violations.

Ward County's Priority Strategy - Provide enhanced enforcement to support local agency implementation of Red-Light-Running confirmation lights for at-risk intersection locations.
Description: To reduce the most common type of severe crashes at signalized intersections--right angle crashes - Ward County would like to deploy an innovative safety strategy using a downstream confirmation light system to reduce red-light running. A blue LED light mounted on the back of a traffic light is activated when an offender runs the red light. A single officer stationed across the intersection downstream from the traffic light safely observes and pursues the red light violator (instead of one officer to observe and an additional officer to pursue). To implement, red-light-running confirmation lights requires interdependent collaboration of both engineering and enforcement; even more effective would be added public outreach about the RLR confirmation lights.

## Getting Started:

- Contact the Traffic Safety Office (TSO) to participate in the SHSP process as a stakeholder in the implementation of strategies identified for priority safety emphasis areas, such as speed and aggressive driving, in the SHSP.
- Work with NDDOT staff regarding specific design features of the system. Contact NDDOT Traffic Operations Section, Shawn Kuntz, 701-328-2673.
- Coordinate with local law enforcement:
- Ask for their assistance in locating the enforcement lights on traffic signal poles/mast arms (optimum viewing locations)
- Ask for an agreement regarding minimum levels of enforcement (i.e., one hour per day at any of the equipped locations)
- Provide training to officers after installation - demonstrate that the "Blue/Confirmation" Light does come on at the same instant as the red light of the signal.
- Encourage law enforcement to coordinate with the City/County attorney - make sure the attorney understands the technology and is willing to prosecute the violators.
- Encourage the City/County attorney to coordinate with the district court judge - make sure the judge understands the technology and will uphold charges and support the conviction of violators.
- Prior to issuing any tickets for violations using the Confirmation Lights, have the traffic signal operations engineer check all of the signals clearance intervals (Yellow + All Red) to make sure they are 100 percent consistent with the agencies adopted guidelines. Have a note confirming compliance signed by the engineer put in the signal controller cabinet. (This will help address the inevitable complaint by those issued tickets that the agency changed the clearance intervals to generate more violators - to increase revenue streams.)
- With local law enforcement, attend county board/city council meetings to speak on the community safety benefits of red-light-running confirmation lights.


## Implementation Resources:

- For crash data and analysis to focus red-light-running enforcement efforts, contact the NDDOT Traffic Safety Office (TSO) at (701) 328-4692.
- See Section 5.5, Traffic Safety Office Supporting Resources.
- Safety projects developed as part of the LRSP are eligible for funding through the state's Highway Safety Improvement Program (HSIP) including enhanced enforcement.
- Contact local agencies that have deployed red-light-running confirmation lights:
- City of Burnsville Public Works, Minnesota

Engineering Department
100 Civic Center Parkway
Burnsville, MN 55337
Phone: 952-895-4534

- Richardson Police Department, Texas

140 North Greenville Ave.
Richardson, TX 75081
Phone: 972-744-4800

## Ward County's Priority Strategy - Provide enhanced enforcement on local, at-risk locations for lane departure.

Description: To reduce lane departure severe crashes on rural paved roads, Ward County will be deploying infrastructure safety improvements (e.g., centerline rumble strips, edge line rumble strips, adding or widening edge lines, high visibility pavement markings) at select atrisk corridors. To maximize the expected safety benefit of the road improvements, integrating increased enforcement presence at targeted at-risk locations and timeframes will reduce risky driver behaviors through strengthening the public's perceived risk of being stopped.

## Getting Started:

- Contact the Traffic Safety Office (TSO) to participate in the SHSP process as a stakeholder in the implementation of strategies identified for priority safety emphasis areas, such as lane departure, in the SHSP.
- Work with NDDOT staff regarding specific design features of the system. Contact NDDOT Traffic Operations Section, Shawn Kuntz, 701-328-2673.
- Coordinate with local law enforcement to provide enhanced enforcement at local, at-risk locations for lane departure.
- Based on crash data, identify timeframes for high crash risk (i.e., Saturday evening hours)
- Ask for an agreement regarding minimum levels of enforcement (i.e., one hour per day at any of the equipped locations, target contacts per hour, etc.)


## Implementation Resources:

- For crash data and analysis to focus lane departure enforcement efforts, contact the NDDOT Traffic Safety Office (TSO) at (701) 328-4692.
- See Section 5.5, Traffic Safety Office Supporting Resources.
- Safety project developed as part of the LRSP are eligible for funding through the state's Highway Safety Improvement Program (HSIP) including enhanced enforcement.
- See Section 5.4.7 for speed and aggressive driving implementation resources.


### 5.5 Traffic Safety Office Supporting Resources

Unless otherwise indicated, for technical assistance and supporting resources contact the NDDOT Traffic Safety Office (TSO) at (701) 328-4692.

### 5.5.1 TSO Grant Program Application Process

The TSO solicits grant applications from eligible state and local agencies and for-profit and nonprofit organizations that address North Dakota's problem solution plans or PSPs. PSPs reflect the state's greatest opportunities for behavioral safety improvement. Grant applications are due June $30^{\text {th }}$ of each year and are evaluated based on: (1) response to identified problems, (2) proposed evidenced-based strategy, (3) clear objectives, (4) comprehensive evaluation plans, and (5) cost-effective budgets. Selected projects are included in TSO's Highway Safety Plan and once approved by NHTSA, grant contracts are generally effective October 1 through September $30^{\text {th }}$.

### 5.5.2 Technical Assistance

## County Outreach Program

The TSO, in cooperation with the North Dakota Association of Counties, offers a county-based Traffic Safety Outreach program to provide advocacy and community mobilization, media support, public outreach, and training to address seat belt use, impaired driving, speeding, and distracted driving at the county level. County participants include law enforcement, transportation engineering, social services, public health, businesses, nonprofit agencies, faithbased agencies, media, and other entities.

### 5.5.3 Traffic Records/Crash Data

## Traffic and Criminal Software or TraCS

The quality of traffic safety problem identification and decision making regarding effective safety strategies and their implementation is based on the quality and timeliness of crash data. Data is collected from officer crash reports at the time of the incident when a crash involves fatalities, injuries, or at least $\$ 1,000$ in property damage. NDDOT reviews the crash report and enters the data into a centralized database called the Crash Reporting System or CRS.

To assist law enforcement in providing timely, complete, and accurate crash reports, the NDDOT Traffic Safety Office (TSO) supports the installation of Traffic and Criminal Software or TraCS and provides technical assistance and training to local agency and tribal law enforcement to effectively deploy TraCS for in-the-field incident reporting. Local and tribal enforcement agencies are strongly encouraged to utilize the convenience of TraCS for the electronic submission of crash reports to the NDDOT. Key benefits to participating agencies and tribes are the reduced officer time and effort required for duplicate entry into local and state crash databases, reduced need for data entry resources and administrative support, as well as improving the overall quality and timeliness of the crash report.

## Local Agency Crash Data Support

The Upper Great Plains Transportation Institute develops crash data summaries for each law enforcement agency under contract with the TSO for overtime enforcement supporting impaired driving and seat belt enforcement campaigns. The crash data summaries demonstrate the priority crash factors and trends within each local agency's jurisdiction.

## Annual Crash Summary

The NDDOT annually publishes the Crash Summary to identify and describe the annual crash data and historical crash trends in North Dakota including the description of factors contributing to the occurrence of traffic crashes and the resulting injuries and fatalities. The Crash Summary is a valuable reference resource for local agencies and their safety partners for problem identification, safety strategy planning, targeted strategy implementation, program evaluation, and media inquiries.
http://www.dot.nd.gov/divisions/safety/docs/crash-summary.pdf

## References

AAA Foundation for Traffic Safety (AAA), 2012. 2012 Traffic Safety Culture Index.
Washington DC. January.
Dahlberg, Linda L., and Etienne G. Krug, 2002. "Chapter 1. Violence-a Global Public Health Problem." World Report on Violence and Health. Edited by Etienne G. Krug, Linda L. Dahlberg, James A. Mercy, Anthony B. Zwi, and Rafael Lozano. World Health Organization: Geneva, Switzerland.

Keating, Daniel P., 2007. "Understanding Adolescent Development: Implications for Driving Safety." Journal of Safety Research. Vol. 38, Issue 2. Pages 147-157.
Lerner, Neil, Jeremiah Singer, and James Jenness, 2010. "Safer Drivers." White Papers for: Toward Zero Deaths: A National Strategy on Highway Safety. White Paper No. 3. July 12.

National Highway Traffic Safety Administration (NHTSA), 2013. Countermeasures that Work: A Highway Safety Countermeasure Guide for Sate Highway Safety Offices. 7th Edition. Report No. DOT HS 811 727. Washington DC. April.

National Highway Traffic Safety Administration (NHTSA), 2013. Technology Transfer Series, Alcohol and Highway Safety: Screening and Brief Intervention for Alcohol Problems as a Community Approach to Improve Traffic Safety. Report No. DOT HS 811 811. Washington DC. September.

National Highway Traffic Safety Administration (NHTSA), 2012. Avoiding "Tween" Tragedies: Demonstration Project to Increase Seat Belt Use Among 8- to 15-year-old Motor Vehicle Occupants, NHTSA, Report No. DOT HS 811 096. Washington DC.

National Highway Traffic Safety Administration (NHTSA), 2012a. Traffic Safety Facts 2010: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System. Report No. DOT HS 811 659. Washington DC.

National Highway Traffic Safety Administration (NHTSA), 2012b. Traffic Safety Facts, 2010 Data: Young Drivers. Report No. DOT HS 811 622. National Center for Statistics and Analysis. Washington DC. May.

National Highway Traffic Safety Administration (NHTSA), 2012c. Traffic Safety Facts, 2010 Data: Speeding. Report No. DOT HS 811 636. National Center for Statistics and Analysis. Washington DC. August.

National Highway Traffic Safety Administration (NHTSA), 2009. Traffic Safety Facts, 2008 Data: Occupant Protection. Report No. DOT HS 811 160. National Center for Statistics and Analysis. Washington DC.

National Highway Traffic Safety Administration (NHTSA), 2009. Nighttime Enforcement of Seat Belt Laws: An Evaluation of Three Community Programs, NHTSA, Report No. DOT HS 811 189. Washington, DC. August.

National Highway Traffic Safety Administration (NHTSA), 2009. Innovative Seat Belt Demonstration Programs in Kentucky, Mississippi, North Dakota, and Wyoming, NHTSA, Report No. DOT HS 811 080, Washington, DC. March.

National Highway Traffic Safety Administration (NHTSA), 2007. Screening and Brief Intervention
Tool Kit for College and University Campuses, Report No. DOT HS 810 751. Washington DC. February.

National Highway Traffic Safety Administration (NHTSA), 2001. Effectiveness of Occupant Protection Systems and Their Use. Fifth/Sixth Report to Congress. Report No. DOT HS 809 442. Washington DC. November.

Ward, Nicholas J., Jeff Linkenback, Sarah N. Keller, and Jay Otto, 2010. "White Paper on Traffic Safety Culture." White Paper No. 2. White Papers for: Toward Zero Deaths: A National Strategy on Highway Safety. Western Transportation Institute, College of Engineering, Montana State University. July 7.
Williams, Allan F., 2007. Public Information and Education in the Promotion of Highway Safety. Research Results Digest 322. National Cooperative Highway Research Program (NCHRP). Washington DC. August.


[^0]:    ${ }^{1}$ Does not include all paved roads outside municipal limits, but focuses on routes that serve regional travel. For example, a loop road that is paved and yet only provides access to a residential neighborhood was considered to be a local road given the type of traffic served by the facility.

[^1]:    ${ }^{1}$ When a risk factor is present, the segment, curve or intersection is given a star. The more risk factors present (that is, more stars) indicates greater potential for a severe crash to occur.

[^2]:    2 Those intersections where traffic on the more heavily used road may proceed through the intersection without stopping, while traffic on the less-used crossroad must stop at the STOP sign before proceding through the intersection.

[^3]:    3 The ADT Cross Product is the major-street entering volume multiplied by the minor-street entering volume.

