

NSBA Resources for Conceptual Steel Bridge Design

Multiple Girder/Beam Structural Systems

Tony Peterson NSBA Senior Steel Bridge Specialist

Smarter. Stronger. Steel.

Overview of the Tools

Span Weight Curves

• Quickest, superstructure weight

Span Standards

 Quick, superstructure weight + plates sizes (1, 2, 3, & 4 span configurations)

LRFD Simon

• Line girder analysis software, any span config, design & analysis, web optimization

NSBA Splice

• Excel spreadsheet and design guide to be used for steel girder splice design

Bolted Field Splices for Steel Bridge Flexural Members

NSBA Steel Span Weight Curves

- Derived from 800 economical solutions
- Quickly determine relative costs
- Various girder spacings, span lengths, and number of spans
 - Horizontally curved & straight bridges
 - Single span or multi-span
 - 7' to over 11' spacing
 - 50' to 450' main span
- Download for free @ aisc.org/spanweightcurves

Example Existing Bridge Replacement

River Crossing

- Total length = 900 ft
- 9 Simple Spans @ 100'
- Width = 35 ft
- # of piers in river = 8

New Bridge Options

- Total length = 900'-0
- Width = 40'-0 (out-out)
 - 2 12 ft lanes, 8 ft outside shoulder, 4 ft inside shoulder, 4 ft barriers
- Overhang = 2'-6
- Area = 900' x 40' = 36,000 sf

Girder Spacing Options

- Four girder lines (3 spaces): 11'-8
- <u>Five</u> girder lines (4 spaces): 8'-9

Smarter. Stronger. Steel.

New Bridge Options

1.) Six Spans – Simply Supported

- Span length = 6 @ 150' = 900'-0
- Five interior piers in river
- Four girder lines, 3 spaces @ 11'-8

2.) Four Spans – Continuous

- Balanced span arrangement (end spans @ 78% of int spans)
- End spans length = 197'
- Interior spans length = 253'
- Three interior piers in river
- Four girder lines, 3 spaces @ 11'-8

New Bridge Options

- 3.) Three Spans Continuous
- Balanced span arrangement (end spans @ 78% of int spans)
- End span length = 275'-0
- Interior span length = 350'-0
- Two interior piers in river
- Five girder lines, 4 spaces @ 8'-9

Option #1

- 1.) Six Spans Simply Supported
- Five interior piers in river
- Four girder lines, 3 spaces @ 11'-8

Single Span — 11 ft and Greater Girder Spacing

Option #1 - Results

- 1.) Six Spans Simply Supported
- Estimated weight per area = 34 psf
- Total estimated superstructure weight = 36,000 sf

x 34 psf = 1,224,000 lb

- Estimated unit cost for fabricated steel FOB = \$2.00/lb
- Total estimated superstructure steel cost = \$2.45 million

Option #2

- 2.) Four Spans Continuous
- Three interior piers in river
- Four girder lines, 3 spaces @ 11'-8

Three or More Spans — 11 ft and Greater Girder Spacing

--- Trendline

Option #2 - Results

- 2.) Four Spans Continuous
- Estimated weight per area = 44 psf
- Total estimated superstructure weight = 36,000 sf

x 44 psf = 1,584,000 lb

- Estimated unit cost for fabricated steel FOB = \$2.00/lb
- Total estimated superstructure steel cost = \$3.17 million

Option #3

- 3.) Three Spans Continuous
- Two interior piers in river
- Five girder lines, 4 spaces @ 8'-9

Three or More Spans — 9 ft to 11 ft Girder Spacing

--- Trendline

Option #3 - Results

- 3.) Three Spans Continuous
- Estimated weight per area = 65 psf
- Total estimated superstructure weight = 36,000 sf
 x 65 psf = 2,340,000 lb
- Estimated unit cost for fabricated steel FOB = \$2.00/lb
- Total estimated superstructure cost = \$4.68 million

Summary Of Weight/Span Curve Options

	#1 – 6 Spans (SS)	#2 – 4 Spans (Cont)	#3 – 3 Spans (Cont.)
Average unit weight (psf)	34	44	65
Total superstructure weight (lb)	1,224,000	1,584,000	2,340,000
Estimated cost per pound	\$2.00	\$2.00	\$2.00
Estimated superstructure cost (\$)	2.45 M	3.17 M	4.68 M
# of girder lines	4	4	5
# of piers in river	5	3	2

Where To Get Pricing Information

aisc.org/certifiedbridgemembers

Option #1 – Weight to Span Charts vs 1-Span Standards

Smarter. Stronger. Steel.

	Weight/Span Charts	1 Span Standards
Average unit weight (psf)	34	
Total superstructure weight (lb)	1,224,000	
# of piers in river	5	

1

I		<u> </u>				<u></u>	
		~ ~		TYPICAL SECTIO	N	•	
					_		
				SEGMENT A			
	Span, ft.	Web A (in. x in. x ft.)	TA1 (in. x in. x ft.)	TA2 (in. x in. x ft.)	BA1 (in. x in. x ft.)	BA2 (in. x in. x ft.)	Web
	150	59 x 0.625 x 38	N/A	21 x 1.5 x 38	22 x 1 x 26	22 x 2 x 12	59
4	160	64 x 0.625 x 40	N/A	22 x 1.5 x 40	24 x 1 x 30	24 x 2 x 10	64
	170	70 x 0.625 x 43	N/A	23 x 1.5 x 43	24 x 1.25 x 33	24 x 2 x 10	70
	180	77 x 0.625 x 45	N/A	24 x 1 x 45	24 x 1.25 x 35	24 x 2 x 10	77
	190	80 x 0.75 x 50	N/A	23 x 1 x 50	26 x 1.5 x 40	26 x 2 x 10	8(
	200	86 x 0.75 x 60	22 x 1 x 45	22 x 1.75 x 15	26 x 1.25 x 40	26 x 2.25 x 20	8(

1[GIR	DER WEIGHT TAB	LE]
	Span, ft.	Segment A	Segment B	Total	С
		tons	tons	tons	Span, ft
	150	6.29	20.53	26.82	150
	160	7.01	22.98	29.99	160
- 1(170	8.23	25.36	33.59	170
-11	180	8.13	28.20	36.33	180
11	100	10.60	32.70	43.30	190

		Deflec	tion Sum	nmaries -	Tenth Po	ints Show	wn					1 1						Shear St	ud Layout					
			Tenth Po	ints and	Deflectio	n, in,						1 /					Group 1		1	Group ?			Group 3	3
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1 /	Span	Studs per	Offset in	-	Pitch	Length		Pitch	Length	-	Pitch	Length
150 ft_snan - steel only_in	0.00	0.61	1 13	1.54	1.79	1.88	1.80	1.55	1 15	0.62	0.00		ft.	row		Spaces	in.	ft.	Spaces	in.	ft.	Spaces	in.	ft.
elab in	0.00	2.49	4.61	6.25	7.20	7.66	7.32	6.31	4.70	2.54	0.00		150	4	0	12	8	8	134	12	134	12	8	8
barrier rails in	0.00	0.26	0.48	0.65	0.75	0.79	0.75	0.65	0.48	0.26	0.00		160	4	0	40	12	40	60	16	80	40	12	40
150 ft snan - total in	0.00	3 34	6.23	8.43	9.84	10.33	9.87	8.50	6.33	3.42	0.00	/	170	4	4	34	12	34	70	16	93.33	42	12	42
250 rt. apart - total, in.	0.00	3.34	0.2.5	0.45	5.04	10.33	5.07	0.50	0.55	3.42	0.00	/	180	4	0	18	12	18	108	16	144	18	12	18
160 ft_snan - steel only_in	0.00	0.67	1.25	1 70	1.99	2.09	2.00	1.72	1.28	0.69	0.00		190	4	3	38	15	47.5	63	18	94.5	38	15	47.5
slah in	0.00	2.62	4.89	6.65	7 77	8.17	7.82	6.75	5.04	2 71	0.00		200	4	2	38	16	50.67	59	20	98.33	38	16	50.67
barrier rails, in	0.00	0.28	0.53	0.71	0.83	0.87	0.83	0.72	0.53	0.28	0.00		210	4	0	40	16	53.33	62	20	103.33	40	16	53.33
160 ft snan - total in	0.00	3.57	6.67	9.06	10.58	11 13	10.65	9.18	6.85	3.68	0.00													
200 10. 30411 - 10141, 11.	0.00	5.57	0.07	5.00	10.50	11.1.5	10.05	5.20	0.05	5.00	0.00													
170 ft. span - steel only. in.	0.00	0.72	1.34	1.83	2.14	2.25	2.16	1.86	1.38	0.74	0.00	1												
slab. in.	0.00	2.67	5.01	6.83	8.00	8.42	8.06	6,96	5.19	2.80	0.00	1												
barrier rails. in.	0.00	0.30	0.55	0.75	0.88	0.93	0.89	0.76	0.56	0.30	0.00	1												
170 ft. span - total. in.	0.00	3.68	6.91	9.42	11.02	11.60	11.10	9.58	7.14	3.84	0.00													
												1												
180 ft. span - steel only, in.	0.00	0.78	1.46	1.97	2.28	2.39	2.28	1.96	1.46	0.78	0.00	1												
slab, in.	0.00	2.85	5.30	7.13	8.27	8.66	8.26	7.12	5.30	2.85	0.00			-						c 6	learing			
barrier rails, in.	0.00	0.31	0.58	0.79	0.92	0.97	0.92	0.79	0.59	0.32	0.00						- X-			¥ 0	eanng			 *
180 ft. span - total, in.	0.00	3.94	7.34	9.88	11.47	12.01	11.47	9.87	7.34	3.95	0.00						6			10 Equ	al Space	16		ما
																	1		- Bott	om of To	n Elande			- 1
190 ft. span - steel only, in.	0.00	0.95	1.78	2.40	2.79	2.93	2.80	2.41	1.79	0.95	0.00						i				, ango			. i
slab, in.	0.00	3.11	5.81	7.83	9.09	9.53	9.11	7.87	5.85	3.13	0.00													
barrier rails, in.	0.00	0.34	0.63	0.86	1.00	1.05	1.01	0.87	0.64	0.34	0.00							1	* *	_	1 1		1	1
190 ft. span - total, in.	0.00	4.39	8.22	11.09	12.88	13.51	12.91	11.15	8.28	4.42	0.00	K					- T-	1-	they					TI
																			T Ť	Ŧ	$\overline{1}$	- t-	T.	
200 ft. span - steel only, in.	0.00	1.02	1.88	2.52	2.92	3.05	2.91	2.50	1.86	1.00	0.00													
slab, in.	0.00	3.03	5.61	7.49	8.67	9.06	8.64	7.43	5.53	2.99	0.00				Inte	erior Girde	er i							
barrier rails, in.	0.00	0.35	0.64	0.86	1.00	1.05	1.00	0.86	0.63	0.34	0.00				Not	te: deflect	ion value	es shown	for		· · ·			·
200 ft. span - total, in.	0.00	4.40	8.14	10.87	12.59	13.17	12.55	10.79	8.02	4.33	0.00				a ty	/pical inte	rior girde	r	D	EFLECT		GRAM		
												4							-					
210 ft. span - steel only, in.	0.00	1.18	2.20	2.95	3.43	3.59	3.43	2.97	2.21	1.18	0.00	1												
slab, in.	0.00	3.38	6.25	8.38	9.71	10.17	9.73	8.41	6.28	3.37	0.00													
barrier rails, in.	0.00	0.38	0.70	0.95	1.10	1.15	1.10	0.95	0.71	0.38	0.00													
210 ft. span - total, in.	0.00	4.94	9.15	12.27	14.23	14.91	14.26	12.32	9.19	4.93	0.00													
																						Г	STEEL BA	RIDGE
																						(₹()	() ²)
																						L I		y ./
																							FOUNDER	0 1995

		Deflect	tion Sum	maries - '	Tenth Po	ints Shov	/n				
		1	Tenth Poi	ints and [Deflectio	n, in.					
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
150 ft. span - steel only, in.	0.00	0.61	1.13	1.54	1.79	1.88	1.80	1.55	1.15	0.62	0.00
slab, in.	0.00	2.48	4.61	6.25	7.29	7.66	7.32	6.31	4.70	2.54	0.00
barrier rails, in.	0.00	0.26	0.48	0.65	0.75	0.79	0.75	0.65	0.48	0.26	0.00
150 ft. span - total, in.	0.00	3.34	6.23	8.43	9.84	10.33	9.87	8.50	6.33	3.42	0.00
160 ft. span - steel only, in.	0.00	0.67	1.25	1.70	1.99	2.09	2.00	1.72	1.28	0.69	0.00

					Shear Stu	ıd Layout					
Sean	Stude per			Group 1			Group 2			Group 3	
ft.	row	Offset in.	Spaces	Pitch in.	Length ft.	Spaces	Pitch in.	Length ft.	Spaces	Pitch in.	Length ft.
150	4	0	12	8	8	134	12	134	12	8	8
160	4	0	40	12	40	60	16	80	40	12	40
170	4	4	34	12	34	70	16	93.33	42	12	42
180	4	0	18	12	18	108	16	144	18	12	18
190	4	3	38	15	47.5	63	18	94.5	38	15	47.5

1.) Six Spans – Simply Supported

- Girder weight (1) = 27 tons
 - (27 tons) x (4 girder lines) x (6 spans) = 648 tons x 1.04 (4% for cross frames/stiffeners/etc) = 674 tons
 - This is for a 43' bridge width. Therefore, reduce by ~ (43/40) = 7.5%
 - Total estimated superstructure weight = $674 \times (1-.075) = 624 \text{ tons}$
- Girder depth: 59" (W) + 1.5" (TF) + 2" (BF) = <u>62.5 inches</u>
- Equivalent unit weight = (624 tons) x 2000 / 36,000 ft² = <u>34.67 psf</u>

	Weight/Span Charts	1 Span Standards
Average unit weight (psf)	34	34.67
Total superstructure weight (lb)	1,224,000	1,248,000
# of piers in river	5	5

Short Span Steel Bridge Alliance

The Short Span Steel Bridge Alliance (SSSBA) is a group of bridge and buried soil steel structure industry leaders providing essential information on the unique benefits, innovative designs, cost competitiveness and performance related to using steel in short span installations up to 140-ft. in length. For more information on the advantages of working with steel in short span bridge construction, or to become a member, please visit our website.

eSPAN140 is a free web-based design tool which provides customized steel solutions for short span crossings up to 140 feet.

Option #2 – Weight to Span Charts vs Simon

Smarter. Stronger. Steel.

	Weight/Span Charts	Simon
Average unit weight (psf)	44	
Total superstructure weight (lb)	1,584,000	
# of piers in river	3	

Simon Inputs

🛸 11.67-197-253-HL93.DAT - LRFD Simon			🖨 11.67-197-253-HL93.DAT - LRFD Simon	
File Analyze Help			File Analyze Help	
। 🖬 📂 🖆 । 🖏 । 🗸 💿 । 👁 🔍 🔞			🐻 🖬 🗁 🖆 🐚 🗸 📀 👒 🔍 😢	
 LRFD Simon Model General Properties Distribution Factors Material Properties Loads User Defined Design Vehicle Properties Shear Stud Properties Span 1 Span 2 Span 3 Span 4 Cross Section Span 1 Span 2 Span 3 Span 4 Cross Section Span 4 Costs Material Fabrication Web Depth Optimization Result Controls Results 	Comments, line 1 Comments, line 2 Comments, line 3 Beam type Number of grides Number of grides Number of traffic lanes Run option Redesign performance ratio Maximum plate thickness Maximum plate thickness Distance from slab bottom to cg of reinforcement Distance from slab bottom to tg of reinforcement Distance from slab bottom to web top Average daily truck traffic, single lane Fatigue service life	11.67 FT SPACING: 4 SPANS @ 197-253-253-197 HL93 and OK Permit Vehicle DF's by AASHTO LRFD for all spans and spacings IGirder 4 2 LRFD Analysis 0 9000000 10000000 in 4.3542 in 1000 75 0000000 years	 LRFD Simon Model General Properties Loads User Defined Design Vehicle Properties Shear Stud Properties Shear Stud Properties Span Information Span 1 Span 2 Span 3 Span 4 Coras Section Span 4 Costs Material Fabrication Web Depth Optimization Results 	Symmetrical span Span length Hinge location* 0 ft Noncomposite uniform dead load H05 b /ft Distance* to end of A1 load ft Noncomposite partial dead load, A2 0 b /ft Distance* to beginning of A2 load ft Bottom flange cross frame spacing flange fully braced for Noncomposite loads flange cross frame spacing 19.7 ft Top flange fully braced for Noncomposite top flange cross frame spacing 19.7 ft Construction lateral moment 20 kip -ft

Simon Results

11.67-197-253-HL93.DAT - LRFD Smon		11.67-197-253-HL93.DAT - LRFD Senon							
File Analyze Help		File Analyze Help							
u ki 🗠 🚅 🛤 🗸 🔾 🛪 🤤 🚱		: H 🗢 🖆 🛤 🗸 😦 38 Q, 🔞							
LRFD Smon	145 (450)	LRFD Simon	ge						
1 Model	I RED Simon	1 Model	WEB FLANG	E LONG	TUDINAL	STIFFE	VER DESIG	IN 1	
Distribution Factors		Distribution Factors	There A here the	So. BOYLEGO	I CAPIL OPAL	- 9 MILLIN	The photo	4A2 1	
Material Properties		Material Properties	SPAN 1						
Loads	Version 10.4.0.0 2024-02-28 10:56	Loads	Concentration (Range	Yield	Approx	Length	Thickness	Width
Transverse Stiffener Propeties		Transverse Stiffener Properties	Component	1.120	Strength	Weight			
Shear Stud Properties	The second	Shear Stud Properties		(ft)	(ksi)	(tons)	(ft)	(in)	(in)
Span Information Span 1	Venice potery INSDA venice Data the	Span Information	web	138.00	50.0	16.19	138.000	0,7500	92.00
Span 2	Program Borary, NSBA_smoo, Borary data.txt	Span 2	web	197.00	50.0	6.92	59.000	0.7500	92.00
Span 3	Agency abraryNSIA_abrary_data.bt	Span 3	top flange	79.00	50.0	3.36	79.000	1.2500	20.00
Cross Section	1 A March 1999 A STANDARD STATE DRIVES DESIGN	Cross Section	top flange	118.00	50.0	1.66	39.000	1.2500	20.00
Span 1	Job Name: AISC/NSBA SIANDARD SIEEL BRIDGE DESIGNS	Span 1	top flange	138.00	50.0	0.85	20.000	1.2500	20.00
Span 2 Snam 3	Project Name	Span 2 Snan 3	top flange	173.00	50.0	2.71	35.000	1.7500	26.00
Span 4	Description:	Span 4	top flange	197.00	50.0	3.18	24,000	3.0000	26.00
1 Costs		X Costs	bottom flange	79.00	50.0	3.36	79.000	1.2500	20.00
Fabrication	11.67 FT SPACING; 4 SPANS @ 197-253-253-197	Naterial Fabrication	bottom flange	118.00	50.0	1.99	39.000	1.5000	20.00
Web Depth Optimization	HL93 and OK Permit Vehicle	Web Depth Optimization	bottom flange	138.00	50.0	1.02	20.000	1 5000	20.00
Result Controls	DF's by AASHTO LRFD for all spans and spacings	Result Controls	bottom flange	173.00	50.0	2.71	35.000	1.7500	26.00
Constant of the second s		10000	bottom flange	197.00	50.0	3.18	24,000	3.0000	26.00
	National Steel Bridge Aliance		11220120122						
	American Institute of Steel Construction		SPAN 2						
	130 East Randolph Street		6	Rauge	Yield	Approx	Leagth	Thickness	Width
	Suite 2000		Component	100	Strength	Weight	(0)	100	dist.
	Chicago, IL 60601			(0)	(650)	(tons)	(0)	(00)	(10)
			web	59.00	50.0	0.92	59.000	0.7500	92.00
	For assistance contact: The National Steel Bridge Alliance: nsbaresources@aisc.org		web	194.00	50.0	15.85	135.000	0.7500	92.00
			web	253,00	50.0	0.92	59.000	0.7500	92.00
	NOTICE: SIMON Systems are copyrighted under the laws of the United States.		top tlange	24.00	50.0	3.18	24,000	3.0000	26.00
	Use of SIMON Systems is permitted by AISC license agreement only.		top flange	59.00	50.0	2/1	35.000	1.7500	26.00
	(c) (c) (c) (c) (c) (c) (c) (c) (c)		top mange	161.00	50.0	1.91	45,000	1.2500	20.00
	LICENSEE: ID# U0360		top nange	101.00	50.0	1.42	22,000	1.2500	20.00
	Note: License expires on 2038-Jan-01 (in 5057 days)		top nange	194.00	50.0	1.40	33,000	1,2500	20.00
	National Steel Bridge Alliance - Perpetual		top nange	252.00	50.0	2.52	20,000	2.0000	26.00
	130 East Randolph, Suite 2000		hottom firmer	233.00	50.0	3.04	24.000	3.0000	26.00
	Chicago IL 60601 United States		bottom fange	59.00	50.0	2.10	35,000	1 7500	26.00
			hottom flange	104.00	50.0	1.01	45 000	1 2500	20.00
			hottom fange	161.00	50.0	2.91	57.000	1 5000	20.00
	TABLE OF CONTENTS		bottom fange	194.00	50.0	1.68	33.000	1 5000	20.00
	Secondary Level Input Parameters		bottom flange	224.00	50.0	2.32	30 000	1 7500	26.00
	Primary Level input Information for Cycle: 1		hottom flange	253.00	50.0	4.17	29 000	3 2500	26.00
	Analysis Reputs								
	Section Evaluation		SPAN 3						
	Control of Television								
	Bill of Materials			n	\$2.55	Access	T	T.1.1	110.141
it Validation Errors or Warnings Detected	Bill of Materials	No Input Validation Errors or Warnings Detected		Pine	¥1.13	A	¥	Thistory	WEAR.
nput Validation Errors or Warnings Detected	• Bl of Materials	No Input Validation Errors or Warnings Detected	G x1 w1	B	301.53 (1)	••••••	1	T 5.1.4	WIN.

Simon Results

4								
11.67-197-253-HL93.DAT - LRFD Simon								
ile Analyze Help								
ु 🖬 📄 🖆 📷 🗸 🕥 😹 🧕 🙆								
LRED Simon								
Model	top flange	194.00	50.0	1.83	43.000	1.2500	20.00	
General Properties	top flange	229.00	50.0	2.71	35.000	1.7500	26.00	
Distribution Factors	top flange	253.00	50.0	3.18	24.000	3.0000	26.00	0
Matenai Properties	bottom flange	29.00	50.0	4.17	29.000	3.2500	26.00	
User Defined Design Vehicle Properties	bottom flange	59.00	50.0	2 32	30,000	1,7500	26.00	1
Transverse Stiffener Properties	bottom flange	94 00	50.0	1 78	35 000	1 5000	20.00	
Shear Stud Properties	bottom flange	151.00	50.0	2.01	57,000	1 5000	20.00	
Span 1	bettern Asses	104.00	50.0	1.02	42.000	1.3500	20.00	
Span 2	bottom flange	194.00	50.0	1.85	43.000	1.2500	20.00	
Span 3	bottom flange	229.00	50.0	2.71	35.000	1.7500	26.00	
Span 4	bottom flange	253.00	50.0	3.18	24.000	3.0000	26.00	
Cross Section	and an							
Span 2	SPAN 4							
Span 3		Range	Yield	Approx	Length	Thickness	Width	
Span 4	Component		Strength	Weight				
Losts Material		(ft)	(ksi)	(tons)	(ft)	(in)	(in)	
Fabrication	web	59.00	50.0	6.92	59.000	0.7500	92.00	
Web Depth Optimization	web	197.00	50.0	16 19	138 000	0.7500	92.00	
Result Controls	ton flange	24 00	50.0	3.18	24 000	3 0000	26.00	
Hesuits	top flange	59.00	50.0	2.71	35,000	1 7500	26.00	
	top flange	81.00	50.0	0.02	22,000	1.7500	20.00	
	top nange	120.00	50.0	0.93	22.000	1.2500	20.00	
	top nange	120.00	50.0	1.00	39.000	1.2500	20.00	_
	top flange	197.00	50.0	3.27	77.000	1.2500	20.00	
	bottom flange	24.00	50.0	3.18	24.000	3.0000	26.00	
	bottom flange	59.00	50.0	2.71	35.000	1.7500	26.00	
	bottom flange	81.00	50.0	1.12	22.000	1.5000	20.00	
	bottom flange	120.00	50.0	1.99	39.000	1.5000	20.00	
	bottom flange	197.00	50.0	3 27	77 000	1 2500	20.00	
Γ	NOTE: AASHT	FO Article IAGE SU W	e C6.11.11.2 I <u>MMARY</u> eb, Flanges,	2 suggests 1 L.S.: 22	using flange 6.94 tons	transverse st	ffeners if 2	'2 or more flange longitudinal stiffeners are used. Flange transverse stiffeners are NOT included in LRFD Sim
		Trai I To	nsverse Stiffe Bearing Stiffe otal (One Gi	eners: eners: rder): 22	0.33 tons 1.38 tons 8.65 tons			
	Bridge Total (Girder W	gt x # of Gir	ders): 91	4.61 tons			

1.) Four Span - Continous

- Superstructure weight = 915 tons (without crossframes and studs)
 - 915 tons x 1.03 (3% for cross frames/studs/etc) = 943 tons
- Girder depth: 92" (W) + 1.25" (TF) + 1.50" (BF) = <u>94.75 inches</u>
- Equivalent unit weight = (943 tons) x 2000 / 36,000 sf = <u>52.39 psf</u>

	Weight/Span Charts	Simon		
Average unit weight (psf)	44	52.39		
Total superstructure weight (lb)	1,584,000	1,886,000		
# of piers in river	3	3		

NSBA Splice – Option #2

Option #2 – NSBA Splice

Simon Output for Splice

RFD Simon Model General Properties Distribution Factors	Approximate number of studs per bridge: 7744 FIELD SPLICE DESIGN INFORMATION (NSBA SPLICE INPUT INFORMATION)							
Material Properties Loads User Defined Design Vehicle Properties Transverse Stiffener Properties	Span 1 Field Splice Location: 138.000 ft							
Shear Stud Properties Span Information Span 1	Unfactored Loads - Splice Center	line	Moment (kips-ft)	Shear (kips)				
Span 2 Span 2	Noncomposite Dead Load (DC1)	-189,400	-127.000				
Span 4	Superimposed Composite Dead Load (DC2)	24.500	-20.500				
Cross Section	Utility (DW)*	0.000	0.000				
Span 1 Span 2	Future Wearing Surface (DW)*	17,100	-14.400				
Span 3	Positive Live Load Plus Impact (LI	(++I)	4992.400	25.000				
Span 4	Negative Live Load Plus Impact (L	L-+D	-4975.600	-130.600				
L Costs Material	Deck Cas	ting**	2649.000	-129 200				
1759990 C	Girder Properties	Left	Right					
	Girder Properties	Left	Right					
	Top flange yield stress (ksi)* 5	0.000	50.000					
	Top flange tensile strength (ksi)* 7	0.000	70.000					
	Top flange thickness (in)	1.250	1.750					
	Top flange width (in) 2	0.000	26.000					
	Web yield stress (ksi)* 5	0.000	50.000					
	Web thickness (in)	0,750	0.750					
	Web depth (in) 9	2.000	92.000					
	Bottom flange yield stress (ksi)* 5	0.000	50.000					
	Bottom flange tensile strength (ksi)* 7	0.000	70.000					
	Bottom flange thickness (in)	1.500	1.750					
	Bottom flange width (in) 2	0.000	26.000					
L	*NOTE LRFD Simon does not accept the steel grade as a program input for either flanges or web. The engineer should use the ye							
	Haunch Properties							
	Haunch (in) 4.000							
	Splice Plate Properties							
	Not Available							
	Bolt Properties							

Option #2 – NSBA Splice

Splice Input

Aste Cambria Cambria - Cam	<u>12</u> - A A - <u> </u> <u>A</u> - <u>A</u> - _n		to Wrige liest ☐ Merge & Center → \$ ~ % 9 mment % Number	17 H 17 H Cand Form	htti 1988 Istianail Format ac stiing - Table -	Styles	Insert	Cells
ightTopFl, ▼ 1 × √ fe Grade	e 50W							
NSBA Bolted S	[®] plice Des	ہ igner - P	late Girder	Ŧ	G	H Cell Fill Color User Input Field	i itus Field	1
			Design Input			Spreadsheet Ca	loulated Field	
Unfactored Loads - Splice Centerlin	ne		Bolt Properties					
Noncomposite Dead Load (DC1)	-189.40	Shear [kip] -127.00	Bolt Type	A325				
Superimposed Composite Dead Load	24.50	-20.50	Bolt Diameter (in)	7/8				
(DC ₂) Future Wearing Surface (DW)	17.10	-14.40	Web Threads	Excluded				
Positive Live Load plus Impact (LL* + I)	4992.40	25.00	Flange Threads	Excluded				
Negative Live Load plus Impact (LL' + I)	-4975.60	-130.60	Surface Condition Factor (K.)	в				
Deck Casting	2649.00	-129,20	Hole Size Factor (Kh)	Standard				
Girder Properties			Top Flange Rows	4	ок			
	Left	Right	Web Rows	2	ок			
Top Flange Material	Grade 50W	Grade SOW	Bottom Flange Rows	4	ок			
Top Flange Thickness (in)	1 1/4	1 3/4						
Top Flange Width (in)	20	26	Concrete Deck Properties					
			Composite	Composite				
Longitudinal Stiffener	No	No	Thickness (in)	9 1/2	ок			
Transverse Stiffener Spacing (d _o) (ft)			Effective Width (in)	100.00	ок			
Transverse Stiffener Status	Unstiffened	Unstiffened	Concrete Strength (ksi)	4.00				

Option #2 – NSBA Splice

Splice Result

- Top Flange: 48 bolts
 (24 per side)
- Bottom Flange: 56 bolts (28 per side)
- Web: 64 bolts (32 per side)

Aste Copy - R. 7. 11	- 12 - A' A'	프 _프 왕·	B Weap Text	6 10 00 10 10	g ag Conditionel To	Eggs		Inser
- Original Painter	Font		igoment 5	Number	Formatting = 1	latrie - 1		 , °
7 • 1 × 7 6			(Browders)					
A	в	с	D	E	F	G	н	3
NSBA Bol	ted Splice	Designe	er - Plate Gi	<u>rder</u>	Cell Fill Color User I	nput Field dsheet Status Field dsheet Calculated Field		
		Design	lesuit summary		oprea	asheet Carculated Heid		
Bolts Arrangement	Bolt Rows (Per	Total Bolts (Per Side)	Decign Bacig	NOT	ICE: DO NOT MO	DIFY THIS SHEET		
Top Flange	4	24	Spreadsheet Calculated					
Web	2	32	Spreadsheet Calculated					
Bottom Flange	4	28	Spreadsheet Calculated					
		Edas Distances		Fed Distance	Gage - Bolt	Pitch - Bolt		
	Gage - Bolts (in)	(in)	Pitch - Bolts (in)	(in)	Groups (in)	Groups (in)		
Top Flange	4 7/8	2	3	1 1/2	6 1/4	3 3/4		
Web	3	2	5 1/2	1 1/2	4 3/4	DNA		
Bottom Flange	4 7/8	2	3	1 1/2	6 1/4	3 3/4		
Splice Plate Dimensions	Thickness (in)	Width (in)	Length (in)					
Top Flange - Outer	3/4	20	and the second					
Top Flange - Inner (Each)	7/8	8 7/8	36 3/4					
Web	7/16	14 3/4	85 1/2					
Bottom Flange - Inner (Each)	1	8 7/8	10.014					
Bottom Flange - Outer	7/8	20	42 3/4					

Summary of the Tools

Span Weight Curves

Quickest, superstructure steel weight

Span Standards

• Quick, superstructure steel weight + plates sizes (1, 2, 3, & 4 span configurations)

LRFD Simon

• Line girder analysis software, any span config, design & analysis, web optimization

NSBA Splice

• Excel spreadsheet and design guide to be used for steel I-girder bolted splice design

Bolted Field Splices for Steel Bridge Flexual Members

Where To Get NSBA Tools & Resources

Span to Weight Curves

• <u>aisc.org/spanweightcurves</u>

Span Standards

• <u>aisc.org/nsba/design-and-estimation-</u> <u>resources/standard-bridge-plans/</u>

LRFD Simon

• <u>aisc.org/simon</u>

NSBA Splice

• <u>aisc.org/nsba-splice</u>

Bolted Field Splices for Steel Bridge Flexural Members

Thank You

Tony Peterson 515-499-2029 peterson@aisc.org www.aisc.org/nsba/

Smarter. Stronger. Steel.