SUBMITTED TO: North Dakota Department of Transportation 608 East Boulevard Avenue Bismarck, ND 58505

BY: Shannon & Wilson, Inc. 1321 Bannock Street, Ste 200 Denver, CO 80204

(303) 825-3800 www.shannonwilson.com

GEOTECHNICAL REPORT Horseshoe Bend Landslide 7-085(110)127, PCN 22304 MCKENZIE COUNTY, ND

February 2020 Shannon & Wilson No: 102116

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

SHANNON & WILSON

Horseshoe Bend Landslide 7-085(110)127, PCN 22304 Geotechnical Report

Submitted To: North Dakota Department of Transportation 608 East Boulevard Avenue Bismarck, ND 58505 Attn: Mr. Colter Schwagler

Subject: GEOTECHNICAL REPORT, HORSESHOE BEND LANDSLIDE 7-085(110)127, PCN 22304, MCKENZIE COUNTY, ND

Shannon & Wilson prepared this report and participated in this project as a consultant to the North Dakota Department of Transportation (NDDOT). Our scope of services was specified in Contract Number 19190118 with the NDDOT dated April 24, 2019. This report presents our interpretation of subsurface conditions and recommendations for measures to mitigate landslide activity at the site and was prepared by the undersigned.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or we may be of further service, please contact us.

Sincerely,

SHANNON & WILSON

Gregory R. Fischer, PE, PhD Senior Vice President

DAV:DKM:ALL:GRF/dav

February 2020

1	Introduction1									
2	Proje	oject Description1								
3	Prev	ious Studies and Data4								
	3.1	Data i	Data from North Dakota Department of Transportation4							
	3.2	Previo	ous Shannon & Wilson Studies4							
4	Curi	rent Exj	plorations, Instrumentation, and Remote Sensing5							
	4.1	Field	Explorations and Instrumentation5							
	4.2	Remo	te Sensing5							
5	Site	Geolog	y and Subsurface Conditions6							
	5.1	Regio	nal Geology6							
	5.2	Lands	lide Movement and Roadway Distress6							
	5.3	Recor	naissance7							
	5.4	Soil and Rock Units								
		5.4.1	Fill							
		5.4.2	Landslide Debris							
		5.4.3	Displaced Bedrock							
		5.4.4	Potentially Displaced Bedrock9							
		5.4.5	Bedrock9							
		5.4.6	Correlation of Bedrock Units							
	5.5	Grou	ndwater							
	5.6	Landslide Limits								
	5.7	Failure Surfaces and High Plasticity Zones								
	5.8	Poten	tial Deep Landslide11							
	5.9	Cut S	ope Failure							
	5.10	North	Slope Landslide							
6	Land	dslide N	/itigation and Slope Stability Analysis12							
	6.1	Align	ment and Orientation of Stabilization13							
	6.2	Analy	sis Methodology14							
	6.3	Analy	Analysis Cross-Sections14							

	6.4	Material Properties	14				
	6.5	Slip Surface Geometry	15				
	6.6	Groundwater Conditions	16				
	6.7	Back-Analysis	16				
	6.8	Preliminary Design					
7	Addi	itional Considerations	17				
	7.1	Scenic Turnout	17				
	7.2	North Slope Failure	17				
	7.3	Temporary Fill/Cut Slopes and Walls	17				
8	Limitations						
9	References						

Exhibits

Exhibit 2-1: Horseshoe Bend Area	2
Exhibit 2-2: Head Scarp of Landslide in 2011; View Northwest	2
Exhibit 2-3: Landslide in Slope Above Area of Roadway Distress; View North	3
Exhibit 2-4: Cut Slope Failure on East Side of the Roadway; View Southeast	3
Exhibit 5-1: Two Primary Locations of Pavement Distress	7
Exhibit 6-1: Soil/Rock Parameters Used for Stability Analysis	15

Tables

Table 1:	Summary of Subsurface Explorations and Instrumentation
Table 2:	Summary of Inclinometer Installations and Readings

Figures

- Figure 1: Vicinity Map
- Figure 2: Site and Exploration Plan
- Figure 3: Landslide Map
- Figure 4: Detailed Map Sheet
- Figure 5: Generalized Subsurface Profile A-A'
- Figure 6: Generalized Subsurface Profile B-B'
- Figure 7: Generalized Subsurface Profile C-C'
- Figure 8: Generalized Subsurface Profile D-D'
- Figure 9: Generalized Subsurface Profile E-E'

Appendices

Appendix A: Current Field Explorations Appendix B: Current Laboratory Test Results Appendix C: Previous NDDOT Field Explorations Appendix D: Previous Shannon & Wilson Explorations and Laboratory Data Appendix E: InSAR Studay Appendix F: Global Stability Analysis Important Information

1 INTRODUCTION

This report presents our geologic and geotechnical characterization of the Horseshoe Bend (HSB) landslide (the HSB landslide), which is affecting US Highway 85 (US-85) between approximately Reference Points (RP) 127.7 and 128.0 in McKenzie County, North Dakota. The report summarizes existing data provided by the North Dakota Department of Transportation (NDDOT) and data obtained by Shannon & Wilson for the current study and prior studies along the US-85 corridor.

2 PROJECT DESCRIPTION

The HSB portion of the US-85 alignment is located approximately 1¼ miles north of the Little Missouri River (see Figure 1). Multiple landslides, which coalesce into a large landslide complex, have been mapped in this area. Landslide activity has affected the roadway at HSB since at least the 1970s, resulting in two roadway realignments. The first realignment occurred in the 1980s and involved eliminating a hairpin alignment east of the current alignment (see Exhibit 2-1). In 2011, significant landslide movement occurred adjacent to the roadway (see Exhibit 2-2). As a result, NDDOT realigned the roadway further to the east. Since realigning the roadway, landslide movement has continued as indicated by pavement distress and inclinometer monitoring, requiring regular maintenance and repaving at the area of distress noted in Exhibit 2-1.

Smaller scale landslide activity has also been observed on a slope immediately above the north side of the roadway (see Exhibits 2-1 and 2-3) and in a cut slope on the east side of the roadway (see Exhibits 2-1 and 2-4). Landslide activity in the north slope has resulted in debris flows reaching the roadway ditch, negatively impacting drainage and requiring maintenance to remove debris and maintain drainage. The east cut slope failure has created similar maintenance issues.

Exhibit 2-1: Horseshoe Bend Area (Image Courtsey of Google Earth Pro)

Exhibit 2-2: Head Scarp of Landslide in 2011; View Northwest (Image Courtsey of North Dakota Department of Transportation)

Exhibit 2-3: Landslide in Slope Above Area of Roadway Distress; View North

Exhibit 2-4: Cut Slope Failure on East Side of the Roadway; View Southeast

The purpose of this geotechnical study is to characterize the landslide(s) affecting the US-85 roadway at the locations shown in Exhibit 2-1, which NDDOT intends to stabilize. Advanced Differential Interferometric Synthetic Aperture Radar (A-DInSAR) data suggests a potentially active larger landslide complex, which is beyond the scope of our work and likely not feasible to stabilize given the constraints of the proposed project.

3 PREVIOUS STUDIES AND DATA

3.1 Data from North Dakota Department of Transportation

Following the landslide at the study area in April 2011, the NDDOT advanced three borings, designated HSB-1 through HSB-3, at the site. Borings HSB-1 and HSB-2 were completed with inclinometer casing. In October 2011, NDDOT advanced an additional boring (HSB-4) and completed the borehole with inclinometer casing. The locations of these borings are shown in Figure 2, and a summary of the completed explorations is provided in Table 1. Boring logs and laboratory test results provided by the NDDOT for these borings are included in Appendix C. Data from inclinometers HSB-1, HSB-2, and HSB-4 are provided in Appendix E and summarized in Table 2.

3.2 Previous Shannon & Wilson Studies

Shannon & Wilson previously completed geotechnical studies to support the environmental evaluation and preliminary design of widening US-85 (NDDOT Project 9-085(085)075, PCN 20046). This work included an evaluation of the landside and conceptual-level evaluation of mitigation options. Relevant reports prepared as part of these previous studies are listed below.

- Geotechnical Data Report (GDR) (Shannon & Wilson, Inc. 2016a)
- Subsurface Characterization Report (SCR) (Shannon & Wilson, Inc. 2016b)
- Technical Memorandum TM-2, Revision 1, Preliminary Cut and Fill Slope Recommendations (TM-2) (Shannon & Wilson, Inc. 2017a)
- Technical Memorandum TM-5, Horseshoe Bend Landslide Mitigation Considerations (TM-5) (Shannon & Wilson, Inc. 2017b)
- Technical Memorandum TM-5 Addendum (A1TM-5) (Shannon & Wilson, Inc. 2017c)
- Geotechnical Data Report Addendum (A1GDR) (Shannon & Wilson, Inc. 2017d)
- Subsurface Characterization Report Addendum (A1SCR) (Shannon & Wilson, Inc. 2017e)

As part of the above studies, we completed numerous explorations near the HSB area. These explorations are summarized in Table 1 and provided in Appendix D (including associated laboratory test results). The boring locations are shown on Figures 2 and 4. As indicated in Table 1, several explorations were completed with instrumentation, which included inclinometers to measure slope movement, vibrating wire piezometers (VWPs) to measure groundwater pressures, and Sondex extensometers to measure settlement. Data collected from these instruments are also provided in Appendix D. Figures 2 and 4 show the locations of the inclinometers and arrows denoting the direction of movement indicated by each inclinometer.

The recommendations and analyses provided herein supersede those provided in the prior reports by Shannon & Wilson.

4 CURRENT EXPLORATIONS, INSTRUMENTATION, AND REMOTE SENSING

4.1 Field Explorations and Instrumentation

Shannon & Wilson completed six additional explorations in June and August 2019, to characterize subsurface conditions at the site. The locations of the explorations are shown in Figure 4. Appendix A presents a discussion of the drilling and sampling procedures used in completing these borings. Appendix A also presents individual exploration logs and an explanation of the symbols and terminology used on the logs.

As noted in Table 1, inclinometers and VWPs were installed in selected borings to characterize landslide movement and groundwater conditions. Data from the inclinometers are provided in Appendix A and summarized in Table 2. Figures 2 and 4 show the locations of the inclinometers and arrows denoting the direction of movement indicated by each inclinometer.

4.2 Remote Sensing

Shannon & Wilson retained Natural Hazards Control and Assessments, S.R.L. (NHAZCA) of Rome, Italy to complete a remote sensing study of the project area using A-DInSAR. The purpose of the study was to characterize the direction and extent of landslide movement at and adjacent to the project area. A-DInSAR uses satellite-based radar to evaluate ground movement.

Interpretations of the data by NHAZCA indicate a landslide boundary based on horizontal movement greater than 1 inch per year (Appendix F). The hypothesized limits of the landslide boundary are presented on Figure 3 and are comparable to our mapped area for the potential deep landslide described in Section 5.8. A westward trend with constant velocities throughout the central portion of the landslide mass was detected. It was not possible to evaluate the northern and southern component of landslide movement in this study due to limitations in the ability to detect movement towards and away from the satellite. A report summarizing NHAZCA's study, including a detailed description of their methods and findings, is included in Appendix E.

5 SITE GEOLOGY AND SUBSURFACE CONDITIONS

5.1 Regional Geology

We reviewed geologic mapping of the Long X Divide Quadrangle, which includes the project site and vicinity, by Murphy and Gonzalez (2003). The map indicates that the project area generally consists of several Quaternary landslides that coalesce into a single large landslide complex. Deposits of Quaternary-age alluvium and colluvium are mapped south of the site, near the Little Missouri River. Bedrock of the Sentinel Butte formation, which is Tertiary in age, is mapped north and west of the project area.

5.2 Landslide Movement and Roadway Distress

Landslide movement has been affecting the HSB area since at least the 1970s. Based on records provided by NDDOT, the original roadway alignment was affected by landslide movement on the northside of the switchback in the 1970s. As a result of this movement, the roadway was realigned near its current location in the early 1980s. However, significant landslide movement occurred in 2011, affecting the roadway and resulting in NDDOT realigning the roadway further east to its current location.

Based on photographs and information provided by NDDOT, the 2011 landslide resulted in a significant head scarp that encompassed part of the roadway pavement (see Exhibits 2-1 and 2-2). Following the failure, NDDOT completed repairs that consisted of regrading the area, including flattening embankment slopes to about 3 horizontal to 1 vertical (3H:1V), replacing cross drains, and shifting the roadway alignment to the east by a maximum of about 120 feet.

Since the 2011 realignment, roadway distress has continued to occur. The two main locations of distress are indicated in Figure 3 (see Exhibit 5-1 for details of the distress).

Movement is occurring at these areas, resulting in bumps in the road that require regular maintenance and repaving. Secondary areas of roadway distress are occurring south of the areas of primary distress, as shown in Figure 3. However, we understand that distress at these areas is less significant and requires less frequent maintenance. As such, NDDOT does not currently intend to mitigate distress at the secondary areas.

Exhibit 5-1: Two Primary Locations of Pavement Distress. Left, Approx. Sta 6742+00 (View East), Right, Approx. Sta 6737+00 (View South)

5.3 Reconnaissance

In addition to initial field reconnaissance completed in November of 2014 and 2015, Shannon & Wilson personnel conducted a focused reconnaissance in the project area in March and April of 2017. The effort was split into two areas, one on the west side of US Highway 85 and the other on the east side. The purpose was to identify areas of landslide movement compared to areas of "intact" or presumed in-place bedrock, and to identify other indicators of slope instability, such as seepage, ponded water, roadway distress, landslide scarps and other notable features. An abundance of scarps, wet and hummocky ground, and discontinuous upended bedding were observed both west and east of the existing highway in the project area.

5.4 Soil and Rock Units

This section presents a discussion of the geologic units that we characterized in this study. These units and their descriptions supersede those presented in prior studies. We did not recharacterize prior boring logs (Appendix D) to reflect the current units and descriptions.

5.4.1 Fill

Fill materials associated with the existing US-85 roadway embankment were encountered in several borings. Fill consisted of stiff to hard (generally stiff to very stiff), lean to fat clay with sand, bedrock fragments and carbonaceous fragments. The fill had a maximum thickness of about 70 feet in boring RP-127-01 (see Appendix D).

5.4.2 Landslide Debris

For the purpose of this report, we defined landslide debris as overburden surficial soil deposits or bedrock of the Tertiary Sentinel Butte Formation that have moved as part of a landslide and do not exhibit significant bedrock structure. Surficial landslides and debris flows were generally shallow failures through the soil and/or weathered bedrock. The deeper-seated landslide deposits consisted of both soil and displaced bedrock.

Landslide debris consisted of medium stiff to hard, yellow-brown, brown, and gray, fat to lean clay with varying amounts of sand. Overall thickness of the landslide debris, as indicated in the borings, ranged from 11 feet to 21 feet. Landslide debris overlies displaced bedrock, which tends to be much thicker, and potentially displaced bedrock.

5.4.3 Displaced Bedrock

For the purpose of this report, we defined displaced bedrock (displaced Sentinel Butte Formation) as deposits with bedrock structure where direct visual evidence from a boring or inclinometer monitoring data indicated that the material has moved in the past. With respect to visual observation of rock samples, we considered the presence of tilted bedding to be indicative of prior landslide activity but not necessarily active movement. However, the absence of tilted bedding by itself was not a reliable indicator of intact bedrock (material that has not experienced prior landslide movement) because translational failures could result in landslide movement without significant rotation. Therefore, we also designated deposits as displaced bedrock when movement was observed in inclinometer data.

Displaced bedrock was characterized by extremely weak to very weak, slightly weathered to fresh claystone, siltstone, sandstone, and coal. These deposits were up to 80 feet thick with laminated bedding that was frequently observed dipping approximately 10 to

90 degrees. Deposits with massive structure or laminated bedding that was observed to be horizontal were also designated as displaced bedrock if tilted bedding was observed below these units.

5.4.4 Potentially Displaced Bedrock

For the purpose of this report, we defined potentially displaced bedrock (potentially displaced Sentinel Butte Formation) as material with bedrock structure but with no direct evidence from our borings or inclinometers that indicate the material has moved in the past, i.e., no tilted laminations or inclinometer movement was observed. Based on new data, our interpretation of the depth to bedrock evolved as part of this current study, hence reflecting the designation of "potentially displaced bedrock" in this report and on the most recent boring logs (Appendix A). Based on the data below, it appears that a large coherent landslide mass has moved in the past and could be actively moving.

- Long X Butte Quadrangle, Murphy and Gonzalez (2003) indicates several landslides that coalesce into one large landslide mass in the project area.
- A-DInSAR data (NHAZCA) suggests constant and spatially homogeneous movement of a large landslide mass within and beyond the extent of the HSB landslide (see Figure 3 and Appendix E for the A-DInSAR study)
- Boring RP-127-03 (see Appendix D) encountered deep displaced bedrock to a depth of 163 feet (elevation 1,939 feet).
- Poor correlation of stratigraphy between borings (see Figures 5 and 6 and Figures 8 and 9) suggests a deeper landslide mass. A detailed discussion of stratigraphic correlations is presented in Section 5.4.6.

5.4.5 Bedrock

The bedrock at the site is the Tertiary Sentinel Butte Formation and predominately consisted of gray claystone interbedded with siltstone, sandstone, and coal (lignite) seams. Most of the bedrock consisted of very low strength, brown, yellow-brown, gray, and greenish-gray claystone. The brown and yellow-brown bedrock was typically moderately to highly weathered, whereas the gray and greenish-gray claystone was typically slightly weathered to fresh. The structure of the claystone ranged from massive to laminated; blocky structure was occasionally observed. Both low angle and high angle joints with iron oxide stains and slickensides were observed. Trace to few carbonaceous fragments, organic plant matter, and fossils were present in some claystone layers. The siltstone beds were very low strength and light gray, light gray-brown, red, tan-yellow, tan, brown, gray, dark gray, and black. The sandstone beds were very low to low strength and light gray, gray, green-gray, yellow-brown, red-brown, tan, and brown.

Several very low strength, black to dark-brown coal layers were encountered during the field exploration program and also observed along the highway cut slopes and natural slopes. The coal layers are presumed to be lignite, which is the lowest grade of coal and has a relatively low carbon content, low energy content and high sulfur content when compared to the other grades of coal (sub-bituminous, bituminous, and anthracite).

5.4.6 Correlation of Bedrock Units

As discussed in the A1SCR, we were able to correlate stratigraphic units using our stratigraphic column and marker beds from borings such as sandstone, siltstone, and different coal seams. As part of the current study, we were able to correlate units from a boring drilled on the plateau (RP-127-06) and for the north slope failure (Landslide Area 4 - boring RP-127-12) (see Figure 7). However, as indicated above, there were several inconsistencies with stratigraphic correlation of borings in the HSB landslide area, which is suggestive of landslide movement at some time.

5.5 Groundwater

Groundwater levels measured during drilling are indicated on the boring logs. For boring RP-127-12, groundwater was not measured during drilling because water was used from the ground surface to advance the borehole. Data obtained from the VWPs installed at the site are presented in Appendix A. The data indicate variable groundwater levels over relatively short distances (i.e., adjacent borings). In our opinion, this is typical for fine-grained bedrock materials, in which groundwater conditions are often governed by fractures and more permeable zones (e.g., sandstone and coal layers). Fluctuations in groundwater level are possible and likely depend on many factors, including seasonal variations, local precipitation, and the surface elevation of the Little Missouri River and other local water bodies.

5.6 Landslide Limits

The interpreted limits of the HSB landslide affecting the roadway are shown in Figure 3. This landslide is designated as Landslide Area 3 in this report (previously described as Landslide Area 18 in the A1SCR). Boring RP-128-04 (located at the scenic turnout) encountered intact rock beneath the roadway fill, which constrains the northern extent of the HSB landslide. In relation to the affected portion of US-85, potentially separated culverts were discovered in the embankment at Station 6744+00 near the 2011 landslide scarp and at Station 6738+00, which also assisted in identifying the active limits of the HSB landslide.

5.7 Failure Surfaces and High Plasticity Zones

The HSB landslide is characterized by localized areas of both shallow and deep movement. Figures 6, 8, and 9 (Profiles B-B', D-D' and E-E') present our interpretation of the subsurface and depth of slope movement through the landslide mass.

Our interpretation of the geometry of the HSB landslide failure surfaces is based on inclinometer monitoring over the periods indicated in Table 2, field reconnaissance, review of aerial imagery and geologic maps, the A-DInSAR study, and visual observation of soil/rock samples recovered from the borings. Data from both the NDDOT and our inclinometers typically indicate at least two active failure surfaces; one shallow (upper) faster moving failure surface (moving at greater than 1 inch per year over the monitoring period) and a lower relatively slower moving landslide (moving less than 1 inch per year over the monitoring period). The upper failure surface ranges from about elevation 2,167 to 2,172 feet, and the lower failure ranges from about elevation 2,105 to 2,115 feet.

We previously developed a stratigraphic column within the Sentinel Butte Formation and designated five high plasticity zones (Shannon & Wilson, 2017e). These weak layers have been corelated to some of the failure surfaces for landslides in other areas along US Highway 85. The upper slip surface may correlate to High Plasticity Zone B. However, the lower slip surface (2,105 to 2,115 feet) does not correlate to any of the previously identified weak layers described in the A1SCR, which suggests the current failures could be occurring within previous displaced landslide material.

5.8 Potential Deep Landslide

There is evidence of other landslides adjacent to and below the HSB landslide, including a deeper and larger one (Landslide Area 1) described and discussed in detail in the A1SCR (previously discussed as Landslide Area 16). In our opinion, the failure surface elevation of this larger landslide complex is approximately at 1,940 feet based on visual observation data from boring log RP-127-03 (see Appendix D) and may correlate to High Plasticity Zone D and the large landslide occurring on the south bank of the Little Missouri River (Shannon & Wilson, 2018). Figure 5 (Profile A-A') presents our interpretation of the subsurface conditions of the larger landslide mass encompassing the HSB landslide. To the extent that such a deeper failure exists, it is uncertain if the failure is still active. However, to the extent

that the larger landslide is active, mitigation of such a deep landslide is not generally feasible or practical and it is beyond the limits of the proposed landslide mitigation project.

5.9 Cut Slope Failure

A cut slope failure (within Landslide Area 2) is located between Stations 6734+50 and 6736+00, east of US-85 (see Figure 3). The failure is approximately 175 feet wide and 160 feet long and was previously described as Landslide Area 17 in the A1SCR (Shannon & Wilson, 2017e). Boring RP-127-11 encountered landslide debris over displace bedrock to a depth of 43 feet. Potentially displaced claystone was observed at 43 feet to the bottom of the boring at 91 feet. See Figure 5 (Profile A-A') for our interpretation of the subsurface conditions at this location.

5.10 North Slope Landslide

The north slope landslide (Landslide Area 4) is located between Stations 6744+00 and 6750+00, on the north side of the roadway (see Figure 3). The entire landslide area is approximately 500 feet wide and 500 feet long and was previously described as Landslide Area 19 in the A1SCR (Shannon & Wilson, 2017e). Shallow bedrock encountered from boring RP-127-12 indicates that debris from the upper part of the landslide area (zone of depletion) has spilled downslope over an intact section of claystone bedrock (zone of accretion). Based on our observations, it appears that the spillover debris remaining on the steep slope commonly experiences localized failures and downslope movement in addition to ongoing debris-flow activity along the southeast margin of the landslide area. Figure 7 (Profile C-C') presents an interpretation of the subsurface conditions at this location.

6 LANDSLIDE MITIGATION AND SLOPE STABILITY ANALYSIS

In TM-5 and A1TM-5, we completed conceptual-level evaluation of potential landslide mitigation alternatives in the HSB area (Shannon & Wilson, 2017b and 2017c). As part of those studies, we evaluated the following options:

- Realigning the roadway to avoid the HSB landslide area.
- Rebuilding the existing embankment with lightweight fill.
- Regrading the landslide area to construct a stabilizing buttress or shear key.
- Installing subsurface drainage features (e.g., drilled horizontal drains, trench drains).
- Installing ground anchors and concrete reaction blocks.

Constructing an anchored drilled shaft structure.

Based on a review by the NDDOT and its consultants and considering impacts to the adjacent Theodore Roosevelt National Park, cost, constructability and risk, an anchored drilled shaft system was selected as the preferred alternative to mitigate the landslide. This section presents limit-equilibrium slope stability analyses that were used to advance the design of the anchored drilled shaft structure. Final design of the structure will be based on subsequent soil-structure interaction analyses completed using the finite difference method.

6.1 Alignment and Orientation of Stabilization

We worked with the NDDOT and discussed mitigation concepts with contractors to assist in developing the anchored drilled shaft alignment. We considered the following factors during our initial design (see Appendix F for the preliminary structure alignment).

- Place all structural components in the existing NDDOT easement or right of way (ROW): While temporary easements can likely be obtained for temporary work outside of the ROW, all structural components will be designed within the existing easement or ROW. Any grading outside of the existing easement or ROW will be returned to existing grade.
- Minimize cuts and fills within the easement/ROW: Where cuts and fills are required, we sought to maintain or increase the existing temporary factor of safety (FS).
- Minimize elevation changes throughout the alignment: Discussion with two contractors indicated that they prefer a horizontal working platform to place crane mats. Grade changes would need to be restricted to 6% or less to allow the cranes to transport the reinforcement cages. To minimize grade changes, we bifurcated the wall at one location and kept the two sections of wall at constant elevations of 2,180 feet and 2,190 feet.
- Orient the stabilization perpendicular to the direction of movement: The drilled shafts and anchors are aligned perpendicular to the 2011 failure and historical and recent inclinometer movements. This orientation also aligns with existing contours.
- Minimize stabilization structural quantities: The bifurcated wall provides the required FS while minimizing the length and size of drilled shafts and ground anchors. Placing the entire wall at an elevation of 2,190 feet would require an extra 10 feet of drilled shaft length and an extra 15 to 20 feet of ground anchors and would increase moments within the drilled shaft that could increase the drilled shaft diameter.
- Maintain a 50-foot wide construction bench: Two contractors indicated that a flat 50-foot wide construction bench on the downslope side of the drilled shafts is needed to efficiently complete the construction. This 50-foot wide bench allows for two crane mats to be placed and allows for construction traffic behind the crane. While the work is

possible with a narrower construction bench, such a condition will likely increase the cost of the project.

Maintain 2H:1V construction slopes, where possible: Based on the existing topography and instability of the Project site, we used construction slopes of 2H:1V except at the following locations: (1) at the south end of the stabilization area (from approximately STA 21+20 to STA 23+00), we recommend 3H:1V fill slopes because of the hummocky nature of the ground and the possibility of 2H:1V slopes loading up the top of existing head scarps; (2) we recommend a temporary fill wall be placed from STA 27+15 to Sta 27+30 to avoid spilling of fill for a significant distance down the slope; and (3) we recommend a cut wall be considered between STA 19+90 and STA 21+10 if maintaining a 50-foot wide bench is desired.

6.2 Analysis Methodology

We completed two-dimensional limit-equilibrium stability analyses using the software SLOPE/W 2019 (Geo-Slope International, Ltd., 2019). We used the Morgenstern and Price (1965) method of slices, which satisfies force and moment equilibrium, to compute FS values. Because the slope has been in place for several years, we assumed excess pore water pressures in the slope have dissipated. Thus, we completed drained, or long-term, stability analyses. Based on the relatively low seismic hazard for the site, we did not consider seismic loading.

6.3 Analysis Cross-Sections

We analyzed seven slip surfaces through the HSB landslide area. Six of these sections were selected at locations perpendicular to the drilled shaft layout and aligned with the direction of slope movement indicated by the inclinometers, and the seventh was selected through the historic 2011 landslide area. We created our cross sections from various digital terrain models provided by the NDDOT. We considered the existing ground surface, proposed construction grading, and final four-lane buildout for our analyses. The location of these cross sections is provided in Appendix F.

6.4 Material Properties

For our analyses, we divided the subsurface profile into the units listed below, with the specified properties.

Unit	Total Unit Weight (pcf)	Effective Stress Friction Angle (deg)	Effective Stress Cohesion (psf)
Fill	125	25	0
Landslide Debris/Displaced Bedrock	120	25	50
Potentially Displaced Bedrock/Bedrock	125	24	200
Slip Surface	125	Non-linear shear streng	th envelope (see below)

Exhibit 6-1: Soil/Rock Parameters Used for Stability Analysis

pcf = pounds per cubic foot, deg = degrees, psf = pounds per square foot

For the overburden and bedrock, we selected shear strength parameters based on correlations with plasticity and our judgement. For the slip surfaces, we utilized published correlations for residual shear strength envelopes based on liquid limits and clay size fraction (Gamez and Stark, 2016). Based on laboratory testing of selected samples of the comparatively weaker material, we assumed a liquid limit (LL) of 90 and 105 for the upper and lower slip surfaces, respectively (except as described below). The displaced claystone laboratory data LL in the Landslide varies from 39 to 134, but generally falls between 80 to 100. We used a clay size fraction (CF) of 30, and the laboratory data falls between 15 and 58. We then made slight adjustments to the assumed piezometric surface (see Section 6.6) to produce a back-calculated FS of 1.0 for existing conditions.

In order to produce a back-calculated FS of 1.0 for upper stability Section B, we utilized a residual shear strength envelope based on a LL of 110 and CF of 30 to maintain a piezometric surface that was reasonable based on the available groundwater data. Similarly, for Sections E and F we utilized a residual shear strength envelope based on a LL of 100 and 110, respectively, with a CF of 50.

6.5 Slip Surface Geometry

As discussed in Section 5.7, inclinometers at the site generally indicate two failure surfaces, a shallow surface with a base near elevation $\pm 2,170$ feet and a deep surface with a base near elevation $\pm 2,110$ feet. Points on the slip surfaces indicated by inclinometer movement were modeled across the six cross-sections cut perpendicular to the drilled shafts. For the seventh cross-section, the slip surface was modeled at the depth of inclinometer movement and matching the historical scarp and toe of the slide.

6.6 Groundwater Conditions

We used a piezometric line to represent pore water pressures. The piezometric surfaces were selected based on groundwater levels measured by data loggers connected to the previously installed VWPs, groundwater levels measured during drilling, and our judgment. Groundwater levels were slightly modified to back calculate a FS of 1.0 at each cross-section.

6.7 Back-Analysis

Because the slope has moved significantly, the FS of the slope can be considered to be 1.0 at the time of failure (Duncan and Wright, 2005). Assuming an FS of 1.0, a stability model that is representative of conditions at the time of failure can then be developed and used as a baseline for comparison with various landslide mitigation alternatives. The results of the back-analysis to an FS of 1.0 are shown in Appendix F.

6.8 Preliminary Design

We analyzed the seven sections to determine the drilled shaft shear load and ground anchor loads required to resist the landslide loading and provide a minimum FS of 1.3. We also analyzed a failure mode where the upper (shallower) landslide slides over the top of the stabilization elements.

For our analyses, we assumed that the ground anchors installed through a cap beam atop the drilled shafts will consist of 6-strand anchors, with a 45-foot long bond length, and horizontal spacing of 10 feet. Based on our experience with ground anchors installed in similar geologic conditions in North Dakota, we assumed an ultimate load transfer of 8.4 kips per foot and a FS of 2.25, which corresponds to an allowable tensile capacity of 168 kips per anchor (17 kips per linear foot of wall). We selected a FS of 2.25 based on load testing data on ground anchors in similar formations. We then varied the shear force for the drilled shaft elements to produce a minimum FS of 1.3 for the upper and lower failure surfaces.

Based on our analyses, we determined that the drilled shafts will need to resist a maximum loading ranging from 50 to 260 kips per linear foot of wall. The results for these analyses are shown in Appendix F. Based on our experience with the design of similar structures and the shear force required for an FS of 1.3, we anticipate that the drilled shafts will consist of 5- to 6-foot diameter shafts with a spacing of 2 to 3 shaft diameters. However, final design of the structure, including determining the sizing and spacing of the ground anchors and drilled shafts, will subsequently be completed using numerical modeling.

7 ADDITIONAL CONSIDERATIONS

7.1 Scenic Turnout

A steep, erosion-prone slope exists about 26 feet away from the edge of pavement at the scenic turnout. Our subsurface exploration (boring RP-128-04) suggests that the slope is formed in intact Sentinel Butte Formation bedrock. Therefore, it is our opinion that the slope in this area is currently stable. However, based on other data, including field reconnaissance and our understanding of the dispersive nature of soil and bedrock in the area, we recommend flattening the slope to the extent possible to reduce erosion potential and encroachment of the slope toward the scenic turnout. In addition, the slope should be protected with a turf reinforcement mat or similar erosion control products.

7.2 North Slope Failure

As discussed in Section 5.10, boring RP-127-12 encountered a thin veneer of landslide debris over bedrock at a depth of approximately 11 feet at the bench elevation of this landslide. The boring confirms our prior assumptions that this slope is draped in a relatively thin veneer of landslide debris. We provided recommendations for this failure in technical memorandum TM-2, Preliminary Cut and Fill Slope Recommendations (Shannon & Wilson, 2016b). We will prepare a separate report that updates the recommendations in TM-2 based on the new data collected such that a design could be developed by others at a later date.

7.3 Temporary Fill/Cut Slopes and Walls

Section 6.1 presents temporary cut and fill slopes and wall locations along the proposed anchored drilled shaft alignment. We recommend that the plans and specifications require that temporary cut and fill slope angles be no steeper than those indicated in Section 6.1 to reduce the potential for slope instability during construction. Similarly, we recommend the plans and specifications allow temporary wall locations only at the locations indicated in Section 6.1. The documents should clearly indicate that the contractor is responsible for the design of temporary walls. The design calculations for any temporary walls should be a construction submittal to the NDDOT for review.

In addition, the plans and specifications should indicate that the contractor is responsible for finding material for the platform and maintaining the platform throughout the project.

8 LIMITATIONS

This report was prepared for the exclusive use of the North Dakota Department of Transportation for specific application to the Horseshoe Bend Landslide. It should not be made available for purposes other than those described in this report.

Within the limitations of the scope, schedule and budget, the analyses, conclusions and recommendations presented in this report were prepared in accordance with generally accepted professional geotechnical engineering principles and practices in this area at the time this report was prepared. Subsurface conditions assumed for our opinions and evaluations presented herein were based on the explorations and instrumentation data included in this report and our GDR (Shannon & Wilson, 2016a and 2017d). Our opinions could change depending on additional inclinometer and groundwater monitoring. We make no other warranty, either express or implied. Our analyses, conclusions, and recommendations are based on our understanding of the project, as described in this report, and site conditions as they existed at the time our reconnaissance was performed.

Unanticipated soil conditions are commonly encountered and cannot be fully determined by a review of published maps, limited explorations, and site reconnaissance of surficial features. Such conditions frequently require that additional expenditures be made to attain properly constructed projects.

If, during construction, subsurface conditions differ from those indicated by the previous explorations and our reconnaissance are observed or appear to be present, we should be advised at once so we can review these conditions and reconsider our recommendations as necessary. If conditions have changed due to construction operations at or adjacent to the site, we should be notified so we may determine the applicability of the conclusions and recommendations in our report considering the changed conditions.

Shannon & Wilson has prepared the attached document, "Important Information about Your Geotechnical Report," to assist you and others in understanding the use and limitations of our reports.

9 REFERENCES

- Duncan, J. M. and Wright, S. G., 2005, Soil strength and slope stability: Hoboken, N. J., John Wiley & Sons, 297 p.
- Gamez, A.G. and Stark, T.D., 2016, Fully Softened Shear Strength at Low Stresses for Levee and Embankment Design, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, Issue 9.
- Geo-Slope, 2019, Documentation for the SLOPE/W Version 10 software, Geo-Slope International Ltd., Calgary, Alberta.
- Morgenstern, N.R., and Price, V.E., 1965, The Analysis of the Stability of General Slip Surfaces, Geotechnique, Vol. 15, pp. 79-93.
- Murphy, E.C. and Gonzalez, M.A., 2003, Surface geology of Long X Divide, North Dakota quadrangle, North Dakota Geological Survey, scale 1:24,000.
- North Dakota Department of Transportation (NDDOT), 2011, Project SER-7-085(063)127, 1.5 Miles North of Long X Bridge Slide Repair, Base, HBP, design plan set, 116 sheets.
- Shannon & Wilson, Inc., 2016a, Geotechnical Data Report, US-85 I-94 to Watford City Bypass, Project No. 9-085(085)075, PCN 20046, Billings, McKenzie, and Stark Counties, North Dakota: Report prepared by Shannon & Wilson, Inc., Denver, Colorado, Project Number 23-1-01453-230, for Kadrmas, Lee & Jackson, Inc., Bismarck, North Dakota, October 14.
- Shannon & Wilson, Inc., 2016b, Subsurface Characterization Report, US-85 I-94 to Watford City Bypass, Project No. 9-085(085)075, PCN 20046, Billings, McKenzie, and Stark Counties, North Dakota: Report prepared by Shannon & Wilson, Inc., Denver, Colorado, Project Number 23-1-01453-230, for Kadrmas, Lee & Jackson, Inc., Bismarck, North Dakota, November 14.
- Shannon & Wilson, Inc., 2017a, Technical Memorandum TM-2, Preliminary Cut and Fill Slope Recommendations, US-85 - I-94 to Watford City Bypass, Project No. 9-085(085)075, PCN 20046, Billings, McKenzie County, North Dakota: Technical Memorandum prepared by Shannon & Wilson, Inc., Denver, Colorado, Project Number 23-1-01453-230, for Kadrmas, Lee & Jackson, Inc., Bismarck, North Dakota, March 17.

- Shannon & Wilson, Inc., 2017b, Technical Memorandum TM-5, Horseshoe Bend Landslide Mitigation Considerations, US-85 - I-94 to Watford City Bypass, Project No. 9-085(085)075, PCN 20046, Billings, McKenzie County, North Dakota: Technical Memorandum prepared by Shannon & Wilson, Inc., Denver, Colorado, Project Number 23-1-01453-230, for Kadrmas, Lee & Jackson, Inc., Bismarck, North Dakota, June 6.
- Shannon & Wilson, Inc., 2017c, Technical Memorandum TM-5 Addendum, Horseshoe Bend Landslide Mitigation Considerations, US-85 - I-94 to Watford City Bypass, Project No. 9-085(085)075, PCN 20046, Billings, McKenzie County, North Dakota: Technical Memorandum prepared by Shannon & Wilson, Inc., Denver, Colorado, Project Number 23-1-01453-230, for Kadrmas, Lee & Jackson, Inc., Bismarck, North Dakota, July 12.
- Shannon & Wilson, Inc., 2017d, Geotechnical Data Report Addendum, US-85 I-94 to Watford City Bypass, Project No. 9-085(085)075, PCN 20046, Billings, McKenzie, and Stark Counties, North Dakota: Report prepared by Shannon & Wilson, Inc., Denver, Colorado, Project Number 23-1-01453-230, for Kadrmas, Lee & Jackson, Inc., Bismarck, North Dakota, September 15.
- Shannon & Wilson, Inc., 2017e, Subsurface Characterization Report Addendum, US-85 I-94 to Watford City Bypass, Project No. 9-085(085)075, PCN 20046, Billings, McKenzie, and Stark Counties, North Dakota: Report prepared by Shannon & Wilson, Inc., Denver, Colorado, Project Number 23-1-01453-230, for Kadrmas, Lee & Jackson, Inc., Bismarck, North Dakota, October 7.
- Shannon & Wilson, Inc., 2018, Geotechnical Report, Long X Bridge Replacement, 7-085(109)125, PCN 22041, McKenzie County, North Dakota.

Borina	Top Elevation	Total Depth	Bottom Elevation	Date Completed	Instrumentation			
Designation	(ft)	(ft)	(ft)		Inclinometer	VWP	Sondex	Comment
RP-127-01	2223	176.5	2047	12/13/2014	Х	х		Elev. Est'd based
RP-127-01A	2223	140	2083	4/24/2017	Х		Х	Elev. Est'd based
RP-127-02	2154	150	2004	7/21/2016				Elev. Est'd based
RP-127-03	2102	175.5	1927	7/28/2016				Elev. Est'd based on dtm
RP-127-04	2077	140	1937	7/13/2016	Х			Elev. Est'd based on dtm
RP-127-05	2192	170	2022	7/19/2016	Х			Elev. Est'd based on dtm
RP-127-06	2491	202	2289	8/4/2016				Elev. Est'd based on dtm
RP-127-07	2250	131.5	2119	4/28/2017	Х	Х	Х	Elev. Est'd based on dtm
RP-127-08	2204.5	101	2103.5	6/28/2017	х			
RP-127-09	2172.7	100.4	2072.3	6/27/2019	х			
RP-127-10	2197.7	111	2086.7	6/26/2019	х			
RP-127-11	2267.9	91	2176.9	6/29/2019				
RP-127-12	2350	80.8	2269	8/15/2019	Х			Elev. Est'd based on dtm
RP-128-04	2327.8	91	2236.8	6/28/2019				
HSB-1	2240	105	2135	4/13/2011	Х			Elev. Est'd based on dtm
HSB-2	2224	112	2112	4/14/2011	Х			Elev. Est'd based on dtm
HSB-3	2260	27	2233	4/20/2011				Elev. Est'd based on dtm
HSB-4	2185	85	2100	10/13/2011	Х			Elev. Est'd based on dtm

Table 1 - Summary of Subsurface Explorations and Instrumentation

NOTES:

1 Elevations of borings RP-127-08 through RP-127-11 and RP- 128-04 obtained by NDDOT survey.

2 Elevations of all other borings and borings completed by NDDOT (designated by "HSB" prefix) were estimated based on digital terrain model provided by KLJ.

ft = feet

Table 2 - Summary of Inclinometer Installations and Readings

Inclinometer Designation	Ground Surface Elevation (ft)	Bottom Elevation (ft)	A+ Direction Aziumuth ₁ (deg)	Initialization Date	Latest Reading Date	Average Displacement Rate ₂ (in/year)	Approx. Direction of Movement (deg)	Slip Surface Elevation (ft)	Comment
RP-127-01	2223	2047	259	8/20/2015	10/9/2019	0.07	210	2106	
RP-127-01A	2223	2083	283	5/19/2017	10/9/2019	0.09	236	2105	
RP-127-04	2077	1937	273	8/16/2016	10/9/2019	0.09	229	2056	
RP-127-05	2192	2022	199	8/16/2016	3/29/2017	5.38	228	2169	Sheared to failure
RP-127-07	2250	2119	268	5/9/2017	10/9/2019	0.41	200	2196	
RP-127-08	2204.5	2103.5	232	7/17/2019	10/9/2019	0.04	232	2187	Possible additional shears at EL 2164 ft and EL 2148
RP-127-09	2172.7	2072.3	218	7/17/2019	10/9/2019	0.22			Possible shear at EL 2111 ft and EL 2090 ft
RP-127-10	2197.7	2086.7	203	7/17/2019	10/9/2019	7.97	210	2168	
RP-127-12	2350	2279	230	8/26/2019	10/9/2019	-	-		Inclinometer exhibts tilting at EL 2339 ft
HSB-1	2240	2135	200 3	4/18/2011	9/28/2011	7.17	195	2167	
HSB-2	2224	2112	245 ₃	5/18/2011	9/28/2011				Possible shear at EL 2137 It, but appears to be settlement
HSB-4	2185	2100	254	10/12/2011	10/22/2015	0.75	196	2115, 2123, 2155, 2163	Sheared to failure

NOTES:

1 Azimuth values measured using compass and have been corrected for magnetic declination.

2 Displacement rate based on displacement immediately above lowest slip surface in given inclinometer.

3 Azimuth estimated assuming A+ oriented parallel to embankment slope.

ft = feet; deg = degrees; in/year = inches per year

		_						
0		2000						
	Δ	nnr	ovim	ate	Scale			

Map adapted from aerial imagery provided by Google Earth Pro, reproduced by permission granted by Google Earth ™ Mapping Service.

SHANNON & WILSON, INC.

102116-200

FIG. 1

- - Approximate Surfcial Limits of Landslide Area
 - NDDOT ROW Boundary
 - InSAR Hypothesis of Landslide Boundary
 - **Existing Culvert and Seperation Areas**
 - **Pavement Distress Areas**

_

 \bigcirc

1

Landslide Area Number

- 1) Boring and instrument designations shown in red completed as part of this report, borings and instrument designations shown in green were completed by the NDDOT, and designations shown in white were previously completed by Shannon & Wilson.
- 2) Figure developed from KLJ files Photo_North_NDDOTPrelim_McKenzie.dgn, control_mckenzie.dgn. and RW_BNDRY_McKenzie_ExstLineWorkOnly.dgn.

Horseshoe Bend La	andslide						
7-085(110)127, PCN 22304							
McKenzie County, North Dakota							
LANDSLIDE MAP							
February 2020	102116-200						
SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG. 3						

Appendix A Current Field Explorations

CONTENTS

A.1	Introduction		. A-1
A.2	Explo	rations	. A-1
	A.2.1 Soil and Rock Classification System		A-2
	A.2.2	Standard Penetration Test (SPT)	. A-2
	A.2.3	Modified California (MC) Drive Samples	A-3
	A.2.4	Shelby Tube Sampling	A-3
A.3	A.3 Instrumentation Installation		A-3
	A.3.1	Inclinometer Installation	A-3
	A.3.2	Vibrating Wire Piezometer Installation	A-4
A.4	Inclinometer Readings		A-4
A.5	Groundwater Elevation Calculation A		A-5

Tables

Table A-1:	Calibration Data for Groundwater Calculation	
Table A-2:	Groundwater Depths Calculated from Vibrating Wire Piezometers	

Figures

Figure A-1:	Soil Description and Log Key
Figure A-2:	Rock Classification and Log Key
Figure A-3 through A-7:	Log of Boring RP-127-08 through RP-127-12
Figure A-8:	Log of Boring RP-128-04
Figure A-9 through A-11:	Inclinometer Cumulative Displacement, Boring RP-127-08 through RP-127-10

Figure A-12: Inclinometer Cumulative Displacement, Boring RP-127-12

A.1 INTRODUCTION

The field exploration program for the Horseshoe Bend Landslide Repair project was conducted from June 25, 2019 through June 29, 2019 and August 12, 2019 through August 15, 2019. The program consisted of drilling six geotechnical borings, designated RP-127-08 through RP-127-12, and RP-128-04. A representative from Shannon & Wilson, Inc. (Shannon & Wilson) observed the drilling, sampling and instrumentation operations; retrieved representative samples for laboratory testing; and prepared descriptive field logs of the borings. The methods used to conduct the field exploration program are described below.

A.2 EXPLORATIONS

The drilling was coordinated (including site access, permitting, traffic control, subcontractor coordination and utility locates) and observed by our field representative. Individual boring logs are presented on Figures A-3 through A-8. These exploration logs represent our interpretation of the subsurface conditions encountered at the time of drilling and the results of laboratory testing. The location of each boring (as shown in Figure 2) was surveyed in the field by the North Dakota Department of Transportation (NDDOT) upon drilling completion and coordinates of the boring locations are indicated on each log.

Five of the six borings were drilled by Interstate Drilling Services, LLP (IDS) of Grand Forks, North Dakota under subcontract to Shannon & Wilson using a Diedrich D-50 turbo diesel track-mounted drill rig. These borings were advanced with an 8-inch-outer-diameter, hollow stem auger (HSA) to depths between 14 and 20 feet. When the subsurface conditions became too hard for HSA, IDS used mud rotary techniques with a 4.25-inch diameter drill bit to advance the borings to depths up to 111 feet.

A sixth boring (RP-127-12) with difficult access was drilled by Salisbury & Associates, Inc. (Salisbury) of Spokane, Washington under subcontract to Shannon & Wilson using a Burley 2500 Geotechnical Drill. The drill rig, supporting equipment, and supplies were all airlifted on to the site using a Eurocopter AS350 A-Star B3 / B3e helicopter. This boring was advanced using a variety of drilling methods including HWT casing advance (4.5-inch diameter), HQ3 coring techniques, and HQ casing advance (3.9-inch diameter).

During drilling, the Shannon & Wilson field representative measured the approximate depth to groundwater using an electronic water level indicator (when possible). Due to the presence of drilling fluid, it was not possible to measure groundwater levels in borings advanced using mud rotary techniques, HQ3 core, or casing advancer. Upon the

completion of drilling, the boreholes were backfilled with bentonite-cement grout (see section A-3). The groundwater levels measured during drilling, as applicable, are noted on the individual boring logs.

A.2.1 Soil and Rock Classification System

During drilling, the Shannon & Wilson representative collected soil/bedrock samples and prepared a field log of each boring. Soil classifications were based on ASTM International (ASTM) Designation: D2487, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), and ASTM Designation: D2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). The system is referred to as the Unified Soil Classification System and is summarized on Figure A-1. The Shannon & Wilson representative classified rock samples, when displaced as landslide deposits, in general accordance with the International Society of Rock Mechanics classification method. According to this system, rock is classified based on the stratigraphic structure, rock strength, degree of weathering, and other properties. The rock classification system is summarized on Figure A-2.

The bedrock encountered in the borings was generally found to be very dense and hard when considered as a lithified soil material. However, when compared to other types of bedrock using the International Society of Rock Mechanics classification of rock strength, the rock resembles a very weak rock. Therefore, for completeness, the boring logs contain dual descriptions of the bedrock using the USCS and rock classification systems, where appropriate.

A.2.2 Standard Penetration Test (SPT)

Disturbed samples were obtained in the borings in general accordance with SPT procedures (ASTM D1586) and consisted of driving a 2-inch outside diameter, 1.375-inch inside diameter split-spoon sampler a distance of 18 inches. Samplers were driven using an automatic 140-pound hammer free-falling a distance of 30 inches. SPT samples driven by Salisbury were done using a 140-pound hammer using a cathead also with a 30-inch free-falling distance. During sampling, the Shannon & Wilson field representative recorded the number of blows for each 6-inch increment of penetration and summed the blow counts for the last two 6-inch increments. This sum is recorded as the penetration resistance number, or N-value. If high penetration resistance prevented driving the total length of the sampler, the Shannon & Wilson field representative recorded the partial penetration depth and blow count. The N-values provide a means for evaluating the relative density or compactness of cohesionless (granular) soils and consistency or stiffness of cohesive (fine-grained) soils (see Figure A-1). The raw N-values are shown on the individual boring logs. Representative

portions of the split-spoon sample obtained in conjunction with the SPT were placed in a screw-top plastic jar and transported to our laboratory in Denver, Colorado.

A.2.3 Modified California (MC) Drive Samples

Disturbed soil and rock samples were also obtained using a MC sampler. The MC test procedure is similar to the SPT, except a larger diameter barrel sampler (2½-inch O.D., lined with 2-inch-diameter brass tubing) is used and driven 12 inches. During sampling, the field representative recorded the number of blows for each 6-inch increment of penetration. As a result of the larger diameter, the MC sampler yields slightly higher raw blow count numbers when compared to SPT N-values for similar soils. Because the difference in blow counts does not significantly impact our evaluation, we used the field MC blow counts over the 12-inch increment to evaluate the relative density and consistency/stiffness of the subsurface materials following SPT terminology. Representative samples were sealed in the brass liner tubes with plastic caps and transported to our laboratory in Denver, Colorado.

A.2.4 Shelby Tube Sampling

Relatively undisturbed soil/rock samples were obtained using Shelby tube samplers in general accordance with ASTM D1587, Standard Practice for Thin-Walled Tube Geotechnical Sampling of Soils. The locations of these samples are shown on the individual boring logs. These samples were collected by using the hydraulic ram of the drill rig to push the thin-walled tube sample into the soil/rock at the bottom of the borehole at the desired depth. The thin-walled tube was connected to the drill rods via a rigid sampling head. After pushing, the drill rods were retracted, and the tube was detached from the sampling head. The Shelby tubes were then capped and transported to our office for laboratory testing.

A.3 INSTRUMENTATION INSTALLATION

Upon the completion of drilling, a slope inclinometer was installed in boreholes RP-127-08, RP-127-09, RP-127-10, and RP-127-12. Two vibrating wire piezometers (VWPs) were installed in borehole RP-127-12. The construction of individual inclinometers and VWPs are depicted on boring logs, along with the highest groundwater level readings from the VWPs. VWP and inclinometer installation methods are described below.

A.3.1 Inclinometer Installation

The inclinometers consisted of 2.75-inch diameter Slope Indicator casing. After the casing was lowered to the bottom of the borehole, a bentonite-cement grout mixture was pumped

to the bottom of the borehole through a hose that was secured to the outside of the inclinometer casing. To counter buoyancy, water was added to the inclinometer casing before grouting. Following the installation, the instrumentation was completed with a 4-inch by 4-inch stick up monument.

A.3.2 Vibrating Wire Piezometer Installation

Two VWPs (Geokon Model No. 4500S) were installed in borehole RP-127-12. One with a pressure range of 350 kilopascals (approximately 25 psi) and the other with a pressure range of 700 kilopascals (approximately 50 psi). Each VWP consisted of a pressure transducer contained in a stainless steel housing. Water pressure acts against a low air entry filter at one end of the housing. Each installation of a VWP was observed by a Shannon & Wilson representative.

Approximate locations where the VWPs were installed are shown in Figure 2 and locations are summarized on each individual boring log (Appendix A). The fully grouted borehole installation method described in Section 2.3 of the manufacturer's manual (Geokon, 2014¹) was used to complete the installation of the VWPs.

The VWPs were attached at the desired installation depth to the Slope Indicator inclinometer casing, which was lowered to the bottom of the borehole. The boreholes were grouted full as described in Section A.3.1.

A.4 INCLINOMETER READINGS

On October 9, 2019, NDDOT took readings from seven inclinometers in the Horseshoe Bend (HSB) area. The new inclinometer results are provided in Figures A-9 through A-12 and the previously installed inclinometer results are provided in Appendix E and supersede the cumulative displacement plots in the A1GDR.

Rotational and bias corrections were applied to individual inclinometers if data drift was apparent and is indicated on each plot. We have applied a rotational correction to Figure A-9 (RP-127-08). This correction was minor and related to the interaction of a small misalignment of the sensors within the inclinometer probe relative to the profile of the casing. We have also added a bias correction to Figure A-10 (RP-127-09) to remove erroneous apparent deformations along the length of casing.

¹ Geokon, 2018, Instruction Manual, Model 4500 Vibrating Wire Piezometer: Geokon, Inc., Lebanon, New Hampshire, Rev. T, March, 26 p.

A.5 GROUNDWATER ELEVATION CALCULATION

Vibrating Wire Piezometers (VWP) were used to determine the approximate depth of groundwater at the time of reading. The VWP were connected to a signal cable that was routed up the borehole to the ground surface. Prior to installation, the VWP transducer was saturated and readings were recorded (pressure and temperature) while under zero water head. The readings were used in conjunction with factory calibration data summarized in Table A-1. The values were taken as a baseline to compare against future readings.

Subsequent readings were taken by NDDOT personnel. The data from the VWPs was reduced to determine the water pressure, which can be used to determine the approximate groundwater depth at the time of sampling. Table A-2 summarizes the calculated groundwater depths and elevations. The highest groundwater elevation measurements are shown on individual boring logs in Appendix A.

Table A-1 - Calibration Data for Groundwater Calculation

Exploration Designation	Model Number	Serial Number	Installation Depth (feet)	Linear Gage Factor (psi/digit)	Thermal Factor (psi/C)	Factory Zero Reading (digits)	Temperature (C)	Barometer (mbar)
RP-127-12	4500S-350kPa	1527929	11	-0.01603	-0.008238	8642	18.6	997.2
RP-127-12	4500S-700kPa	1525251	30	-0.02472	0.006799	8795	19.4	995.9

NOTES:

C = Degrees in Celsius; mbar = millibar; psi = pounds per square inch

Table A-2 - Summary of Groundwater Depths Calculated from Vibrating Wire Piezometers

		Installed Vibrating			Highest Piezometer (Groundwater Readings
Exploration	Ground Elevation ¹	Depth	Elevation	Lithology of	Depth	Elevation
Designation	(feet)	(feet)	(feet)	Installation	(feet)	(feet)
RP-127-12	~2350	11.0	2339	Fat Clay	3.9	2346.1
RP-127-12	~2350	30.00	2320	Coal	29.8	2320.2

NOTES:

1 A tilde (~) represents elevations (z) estimated using the digital terrain model provided by KLJ.

Shannon & Wilson, Inc. (S&W), uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following pages. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory testing procedures (ASTM D2487), if performed.

S&W INORGANIC SOIL CONSTITUENT DEFINITIONS

CONSTITUENT ²	FINE-GRAINED SOILS (50% or more fines) ¹	COARSE-GRAINED SOILS (less than 50% fines) ¹			
Major	Silt, Lean Clay, Elastic Silt, or Fat Clay ³	Sand or Gravel ⁴			
Modifying (Secondary) Precedes major constituent	30% or more coarse-grained: Sandy or Gravelly ⁴	More than 12% fine-grained: Silty or Clayey ³			
Minor Follows major	15% to 30% coarse-grained: <i>with Sand</i> or <i>with Gravel</i> ⁴	5% to 12% fine-grained: <i>with Silt</i> or <i>with Clay</i> ³			
constituent	30% or more total coarse-grained and lesser coarse- grained constituent is 15% or more: with Sand or with Gravel ⁵	15% or more of a second coarse- grained constituent: <i>with Sand</i> or <i>with Gravel</i> ⁵			
¹ All percentages are by weight of total specimen passing a 3-inch sieve					

he order of terms is: Modifying Major with Minor.

³Determined based on behavior.

⁴Determined based on which constituent comprises a larger percentage. ⁵Whichever is the lesser constituent.

MOISTURE CONTENT TERMS

- Dry Absence of moisture, dusty, dry to the touch
- Moist Damp but no visible water
- Wet Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) **SPECIFICATIONS**

Hammer:	140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diam. cathead 2-1/4 rope turns, > 100 rpm		
	NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer.		
Sampler:	10 to 30 inches long Shoe I.D. = 1.375 inches Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches		
N-Value:	Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.		
NOTE: Penetration resistances (N-values) shown or boring logs are as recorded in the field and have not been corrected for hammer efficiency, overburden, or other factors.			

PARTICLE SIZE DEFINITIONS			
DESCRIPTION	SIEVE NUMBER AND/OR APPROXIMATE SIZE		
FINES	< #200 (0.075 mm = 0.003 in.)		
SAND Fine Medium Coarse	#200 to #40 (0.075 to 0.4 mm; 0.003 to 0.02 in.) #40 to #10 (0.4 to 2 mm; 0.02 to 0.08 in.) #10 to #4 (2 to 4.75 mm; 0.08 to 0.187 in.)		
GRAVEL Fine Coarse	#4 to 3/4 in. (4.75 to 19 mm; 0.187 to 0.75 in.) 3/4 to 3 in. (19 to 76 mm)		
COBBLES	3 to 12 in. (76 to 305 mm)		
BOULDERS	> 12 in. (305 mm)		

RELATIVE DENSITY / CONSISTENCY

COHESION	LESS SOILS	COHES	SIVE SOILS
N, SPT, <u>BLOWS/FT.</u>	RELATIVE <u>DENSITY</u>	N, SPT, <u>BLOWS/FT.</u>	RELATIVE CONSISTENCY
< 4	Very loose	< 2	Very soft
4 - 10	Loose	2 - 4	Soft
10 - 30	Medium dense	4 - 8	Medium stiff
30 - 50	Dense	8 - 15	Stiff
> 50	Very dense	15 - 30	Very stiff
		> 30	Hard

WELL AND BACKFILL SYMBOLS

Bentonite Cement Grout	Var Var Var Var Var Var	Surface Cement Seal
Bentonite Grout		Asphalt or Cap
Bentonite Chips		Slough
Silica Sand		Inclinometer or Non-perforated Casing
Perforated or Screened Casing		Vibrating Wire Piezometer

PERCENTAGES TERMS 1, 2

Trace	< 5%
Few	5 to 10%
Little	15 to 25%
Some	30 to 45%
Mostly	50 to 100%

¹Gravel, sand, and fines estimated by mass. Other constituents, such as organics, cobbles, and boulders, estimated by volume.

²Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

Horseshoe Ber 7-085(110) 127 McKenzie County	nd Landslide , PCN 22304 r, North Dakota	
SOIL DESC AND LO	RIPTION G KEY	
February 2020	100116 (აიი

102116-200

SHANNON & WILSON. INC. nnical and Environmental Consultan

FIG. A-1 Sheet 1 of 3

I	MAJOR DIVISIONS	3	GROUP/	GRAPHIC	TYPICAL IDENTIFICATIONS
		Gravel	GW		Well-Graded Gravel; Well-Graded Gravel with Sand
	Gravels (more than 50%	(less than 5% fines)	GP		Poorly Graded Gravel; Poorly Grade Gravel with Sand
	of coarse fraction retained on No. 4 sieve)	Silty or Clayey Gravel	GM		Silty Gravel; Silty Gravel with Sand
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey Gravel; Clayey Gravel with Sand
(more than 50% retained on No. 200 sieve)		Sand	SW		Well-Graded Sand; Well-Graded Sa with Gravel
	Sands (50% or more of coarse fraction passes the No. 4 sieve)	(less than 5% fines)	SP		Poorly Graded Sand; Poorly Graded Sand with Gravel
		Silty or Clayey Sand	SM		Silty Sand; Silty Sand with Gravel
		(more than 12% fines)	SC		Clayey Sand; Clayey Sand with Gra
			ML		Silt; Silt with Sand or Gravel; Sandy Gravelly Silt
	Silts and Clays (liquid limit less than 50)	inorganic	CL		Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Cla
FINE-GRAINED SOILS		Organic	OL		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay
(50% or more passes the No. 200 sieve)		Inorgania	МН		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravelly Elastic Si
	Silts and Clays (liquid limit 50 or more)	morganic	СН		Fat Clay; Fat Clay with Sand or Gra Sandy or Gravelly Fat Clay
		Organic	ОН		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay
HIGHLY- ORGANIC SOILS	Primarily organi color, and c	ic matter, dark in organic odor	PT		Peat or other highly organic soils (se ASTM D4427)

<u>NOTES</u>

1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).

2. Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups. Horseshoe Bend Landslide 7-085(110) 127, PCN 22304 McKenzie County, North Dakota

SOIL DESCRIPTION AND LOG KEY

February 2020

102116-200

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 2 of 3

Poorly Grad	ded Narrow range of grain sizes preser	nt
	or, within the range of grain sizes	
	missing (Gap Graded). Meets crite	eria
	in ASTM D2487, if tested.	
well-Grad	grain sizes present. Meets criteria	in
	ASTM D2487, if tested.	
\\ /	CEMENTATION TERMS ¹	
vveak	slight finger pressure	
Moderate	Crumbles or breaks with considerable	е
Strong	Will not crumble or break with finger pressure	
	PLASTICITY ²	
	APPI	ROX.
		TICTY
DESCRIPTION	VISUAL-MANUAL CRITERIA RAM	
Nonplastic	A 1/8-in. thread cannot be rolled <	4
Low	A thread can barely be rolled and 4 to	0 10
	a lump cannot be formed when	
Medium	drier than the plastic limit.	0.20
Wealdin	much time is required to reach the	0 20
	plastic limit. The thread cannot be	
	limit. A lump crumbles when drier	
	than the plastic limit.	~~
High	It take considerable time rolling > 2 and kneading to reach the plastic	20
	limit. A thread can be rerolled	
	several times after reaching the	
	formed without crumbling when	
	drier than the plastic limit.	
	ADDITIONAL TERMS	
Mottled	Irregular patches of different colors.	
Bioturbated	Soil disturbance or mixing by plants or animals.	Inte
Diamict	Nonsorted sediment; sand and gravel	
Cuttingo	In silt and/or clay matrix.	
Olavak	Material that area of form sides of	
Slough	borehole.	Slick
Sheared	Disturbed texture, mix of strengths.	
PARTICLE A	ANGULARITY AND SHAPE TERMS ¹	
Angular	Sharp edges and unpolished planar surfaces.	
Subangular	Similar to angular, but with rounded	Homo
2	edges.	-
Subrounded	Nearly planar sides with well-rounded edges.	
Rounded	Smoothly curved sides with no edges.	
Flat	Width/thickness ratio > 3.	
Elongated	Length/width ratio > 3.	
Reprinted, with per escription and Ide ternational, 100 B e complete standa	mission, from ASTM D2488 - 09a Standard Pr ntification of Soils (Visual-Manual Procedure), arr Harbor Drive, West Conshohocken, PA 19- ard may be obtained from ASTM International, vision from ASTM D2489. One Standard Pro-	actice for copyright As 428. A copy www.astm.c

International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

ACRONYMS AND ABBREVIATIONS

ATD	At Time of Drilling
Diam.	Diameter
Elev.	Elevation
ft.	Feet
FeO	Iron Oxide
gal.	Gallons
Horiz.	Horizontal
HSA	Hollow Stem Auger
I.D.	Inside Diameter
in.	Inches
lbs.	Pounds
MgO	Magnesium Oxide
mm	Millimeter
MnO	Manganese Oxide
NA	Not Applicable or Not Available
NP	Nonplastic
O.D.	Outside Diameter
OW	Observation Well
pcf	Pounds per Cubic Foot
PID	Photo-Ionization Detector
PMT	Pressuremeter Test
ppm	Parts per Million
psi	Pounds per Square Inch
PVC	Polyvinyl Chloride
rpm	Rotations per Minute
SPT	Standard Penetration Test
USCS	Unified Soil Classification System
q _u	Unconfined Compressive Strength
VWP	Vibrating Wire Piezometer
Vert.	Vertical
WOH	Weight of Hammer
WOR	Weight of Rods
Wt.	Weight
ST	
ded Alter	rnating layers of varying material or color

Interbedded	Alternating layers of varying material or color
	with layers at least 1/4-inch thick; singular: bed.
Laminated	Alternating layers of varying material or color
	with layers less than 1/4-inch thick; singular:
	lamination.
Fissured	Breaks along definite planes or fractures with
	little resistance.
Slickensided	Fracture planes appear polished or glossy;
	sometimes striated.
Blocky	Cohesive soil that can be broken down into
	small angular lumps that resist further
	breakdown.
Lensed	Inclusion of small pockets of different soils.
	such as small lenses of sand scattered through
	a mass of clay.
omogeneous	Same color and appearance throughout
Sinegeneouo	came celer and appearance in oughout.

Horseshoe Bend Landslide 7-085(110) 127, PCN 22304 McKenzie County, North Dakota

SOIL DESCRIPTION AND LOG KEY

February 2020

102116-200

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants 02110-200

FIG. A-1 Sheet 3 of 3

WEATHERING

TERM	DESCRIPTION					
Fresh	No visible sign of rock material weathering					
Slightly Weathered	Slight discoloration on surface					
Moderately Weathered	Discoloring evident; Less than half of the rock material is decomposed					
Highly Weathered	Entire rock mass discolored; More than half of the rock material is decomposed					
Completely Weathered	Rock reduced to a soil with relict rock texture					
Residual Soil	All rock material is converted to soil					

JOINT ROUGHNESS COEFFICIENT (JRC)

COEFFICIENT	DESCRIPTION
14 to 20	VERY ROUGH: Near vertical edges evident
10 to 14	ROUGH: Smooth ridges, surface abrasion
6 to 10	SLIGHTLY ROUGH: Asperities on surface can be felt
2 to 6	SMOOTH: Appears and feels smooth
0 to 2	SLICKENSIDED: Visible polishing, striated surface

DISCONTINUITY TERMS

FRACTURE - Collective term for any natural break excluding shears, shear zones, and faults

JOINT (JT) - Planar break with little or no displacement

FOLIATION JOINT (FJ) or BEDDING JOINT (BJ) - Joint along foliation or bedding

INCIPIENT JOINT (IJ) or INCIPIENT FRACTURE (IF) - Joint or fracture not evident until wetted and dried; breaks along existing surface

RANDOM FRACTURE (RF) - Natural, very irregular fracture that does not belong to a set

BEDDING PLANE SEPARATION or PARTING - A separation along bedding after extraction from stress relief or slaking

 $\ensuremath{\mathsf{FRACTURE}}$ ZONE (FZ) - $\ensuremath{\mathsf{Planar}}$ zone of broken rock without gouge

MECHANICAL BREAK (MB) - Breaks due to drilling or handling; drilling break (DB), hammer break (HB)

SHEAR (SH) - Surface of differential movement evident by presence of slickensides, striations, or polishing

SHEAR ZONE (SZ) - Zone of gouge and rock fragments bounded by planar shear surfaces

FAULT (FT) - Shear zone of significant extent; differentiation from shear zone may be site-specific

STRENGTH

GRADE	DESCRIPTION	APPROX. UCS (psi)
R0	Extremely Weak Rock	36 to 145
R1	Very Weak Rock	145 to 700
R2	Weak Rock	700 to 3,600
R3	Medium Strong Rock	3,600 to 7,200
R4	Strong Rock	7,200 to 14,500
R5	Very Strong Rock	14,500 to 36,250
R6	Extremely Strong Rock	>36,250

DISCONTINUITY DATA

SPACING								
DESCRIPTION	SPACING							
Extremely Close	< 1 in							
Very Close	1 to 2.5 in							
Close	2.5 to 8 in							
Moderate	8 to 24 in							
Wide	24 in to 6 ft							
Very Wide	6 to 20 ft							
Extremely Wide	> 20 ft							

APERTURE WIDTH						
TERM	SPACING					
Very Tight	<0.1mm					
Tight	0.1 to 0.25mm					
Partly Open	0.25 to 0.5mm					
Open	0.5 to 2.5mm					
Moderately Wide	2.5 to 10mm					
Wide	10mm to 1cm					
Very Wide	1 to 10cm					
Extremely Wide	10 to 100cm					
Cavernous	>1m					

Horseshoe Bend Landslide 7-085(110) 127, PCN 22304 McKenzie County, North Dakota

ROCK CLASSIFICATION AND LOG KEY

February 2020

102116-200

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-2 Sheet 1 of 2

R	OCK CLAS	SIFICATION	SYMBOLS		
BEDROCK TYPE	GRAPHIC SYMBOL		ROCK NAME		
		Breccia			
		Conglomerate			
Clastic		Sandstone			
Rocks		Siltstone			
		Claystone			
		Shale			
		Coal			
Carbonate		Limestone			
Sedimentary Rocks		Dolomite			
	* * * * *	Coral			_
	$\begin{array}{c} \diamond \diamond \diamond \diamond \diamond \\ \diamond \diamond \diamond \diamond \diamond \\ \end{array}$	Gypsum			
Rocks		Halite			-
		Calcite			
		Tuff			-
Extrusive	· · · · · · · · · · · · · · · · · · ·	Rhyolite			-
lgneous Rocks	* * * * * * * * * * * * * * * * * * *	Dacite			-
	$\begin{array}{c} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \\ \end{array}$	Andesite			-
		Basalt			-
		Granite			-
Intrusive Igneous	-,>,`-,>,`-,)	Grano-diorite			-
RUCKS	- + + + - + + +	Diorite			-
		Gabbro			-
	$\rightarrow \rightarrow $	Marble			-
	, , , , , , , , , , , , , , , , , , ,	Quartzite			-
Metamorphic		Slate			-
110649		Phyllite			-
		Schist			-
		Gneiss			
			⊢ 7-	lorseshoe Bend 085(110) 127	l Lands PCN 22

McKenzie County, North Dakota

ROCK CLASSIFICATION AND LOG KEY

February 2020

102116-200

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. A-2

Sheet 2 of 2

Total Depth:101 ft.Northing:233,Top Elevation:2204.5 ft.Easting:1,286Vert. Datum:NAD 1983Station:Horiz. Datum:State PlaneOffset:	,707 ft. 8,345 ft. -	Drill Drill Drill Oth	ling M ling C I Rig I er Co	ethod: ompany Equipmo mments	y: ent: s:	HS) Inte Die To I	A to M rstate drich L mud ro	<u>ud Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: D <u>-50 Track Rig</u> Hammer Typ Dtary at 14.5 feet	<u> </u>	
SOIL DESCRIPTION Refer to the report text for a proper understanding of subsurface materials and drilling methods. The stratifi lines indicated below represent the approximate bound between material types, and the transition may be gra	f the ication daries adual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 0 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60	
Stiff, mottled brown, <i>Lean Clay (CL);</i> moist few carbonaceous fragments. Fill	t;			°. 2			5			2 ¹⁰⁰
Medium stiff to stiff, brown to tan, <i>Fat Clay (CH);</i> moist. Landslide Debris	/	8.0		°.2-2			10			100 LL=66
Medium dense, tan, <i>Silt (ML);</i> moist. Lands Debris	slide	15.8		v4 			20			
DISPLACED CLAYSTONE: extremely weat tan to light gray; laminated; moderately to slightly weathered (Displaced Sentinel But Formation). [Stiff to very stiff, <i>Fat Clay (CH);</i> moist.]	ak, tte	21.0		ي ال گ			25	.		
DISPLACED SILTSTONE: extremely weal brown; moderately weathered (Displaced	ık,	33.0		S-7 S-6			30 35	• • •		61
Sentinel Butte Formation). [Stiff, Sandy Silt (ML); moist.] DISPLACED CLAYSTONE: extremely wea gray; laminated; slightly weathered; trace	ak,	50.0		۵ ۳	111111111111111111111111111111111111		40			
carbonaceous fragments (Displaced Senti Butte Formation). [Stiff to hard, <i>Fat Clay (CH);</i> moist; trace sand.]	inel			- 10 2.9	Intered During Drilli		45 50			
40.7 to 40.9, and 55.0 to 55.2 feet.	<i>.</i>	57 0		°.⊤	ndwater Not Encou		55		X	99 LL=139
POTENTIALLY DISPLACED CLAYSTON	E:	57.0			Grou			0 20	40 60	
	Piezomete Bentonite- Bentonite (Surface Co	r Scree Cemen Chips/F oncrete	en and t Grou Pellets Seal	Sand Filt t	ter			 ◇ % Fines (● % Water Plastic Limit Natural Water (<0.075mm) Content ┨ Liquid Limit Content	
RECORDER NOTES							N	Horseshoe Bend Lan 7-085(110) 127, PCN IcKenzie County, North	dslide 22304 n Dakota	
1. Refer to Figures A-1 and A-2 for explanation of symbol definitions. 2. The discussion in the text of this report is necessary for	ols, codes, a	abbrevia undersi	ations tanding	and g of the			LO	g of Boring Ri	P-127-08	
 nature of the subsurface materials. 3. Groundwater level, if indicated above, is for the date s 4. USCS designation is based on visual merculations? 	specified and	d may	vary.	ting		February 2020 102116-200				
 USCS designation is based on visual-manual classification and selected lab testing. 						SHANNON & WILSON, INC. FIG. A-3 Geotechnical and Environmental Consultants Sheet 1 of 2				

Total Depth: 100.4 ft. Northing: 233,951 ft. Top Elevation: 2172.7 ft. Easting: 1,288,143 ft. Vert. Datum: NAD 1983 Station:	_ Drill _ Drill _ Drill _ Oth	ling N ling C I Rig I ler Co	lethod: compan Equipm omment	iy: nent: ts:	HSA Inter Diec To n	to M state Irich L nud re	l <u>ud Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: <u>D-50 Track Rig</u> Hammer Typ otary at 15.0 feet	<u> </u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESIST. ▲ Hammer Wt. & Drop: _1 0 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60
Stiff, brown mottled gray, <i>Lean Clay with Sand</i> (<i>CL</i>); moist; trace carbonaceous fragments and bedrock fragments; interbedded sand layers. Fill	12.0		s-2 			5 10	•	85
Siff to very stiff, brown mottled, <i>Fat Clay (CH);</i> moist; few sand; few carbonaceous fragments and bedrock fragments. Landslide Debris	12.0		S-5 S-4 S-3			15 20 25		89
DISPLACED CLAYSTONE: extremely weak, brown; laminated; moderately weathered; 20 to 30 degree laminations (Displaced Sentinel Butte Formation). [Very stiff, <i>Fat Clay (CH);</i> moist; trace sand.]	28.0		S-7			30 35		99
DISPLACED COAL: extremely weak, black (Displaced Sentinel Butte Formation).	38.5		°2~8			40		
DISPLACED CLAYSTONE: extremely weak, gray; laminated; slightly weathered; 10 to 20 degree laminations (Displaced Sentinel Butte Formation). [Very stiff, <i>Fat Clay (CH);</i> moist; trace to few sand.]	42.0		S-10 ⊥ \$-9	It Encountered During Drilling.		45 50	•	94
CONTINUED NEXT SHEET				Groundwater No		55		10 LL=
	LEGEND 0 20 40 60 * Sample Not Recovered □□□□ Piezometer Screen and Sand Filter ◇ % Fines (<0.075mm)							
						N	Horseshoe Bend Lan 7-085(110) 127, PCN IcKenzie County, North	dslide 22304 i Dakota
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The discussion in the text of this report is necessary for a prope	abbrevi	ations	and q of the			LO	G OF BORING RE	P-127-09
nature of the subsurface materials. 3. Groundwater level, if indicated above, is for the date specified a	ind may	vary.			Fe	brua	ary 2020	102116-200
 USCS designation is based on visual-manual classification and selected lab testing. 					SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet 1 of 2			

Total Depth: 100.4 ft. Northing: 233,951 ft. Top Elevation: 2172.7 ft. Easting: 1,288,143 ft. Vert. Datum: NAD 1983 Station:	 Drilling Method: Drilling Company: Drill Rig Equipment Other Comments: 	HSA to Mud Rotary Interstate Drilling Ser Diedrich D-50 Track To mud rotary at 15.	Hole Diam.: <u>vic</u> eRod Type.: <u>Rig</u> Hammer Typ 0 feet	<u>8 in.</u> <u>AWJ</u> e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft. Symbol Samples	Deb tp → tp → Hamm 0	ATION RESIST. her Wt. & Drop: <u>1</u> 20-	ANCE (blows/foot) 40 lbs / 30 inches 40 60
 DISPLACED CLAYSTONE (continued) Trace carbonaceous fragments from 68 to 73 feet. POTENTIALLY DISPLACED COAL: very weak, black (Potentially Displaced Sentinel Butte Formation). POTENTIALLY DISPLACED CLAYSTONE: extremely weak, gray; laminated; slightly weathered; trace carbonaceous fragments (Potentially Displaced Sentinel Butte Formation). [Very stiff to hard, <i>Fat Clay (CH);</i> moist; few sand.] 	73.0 77.0 77.0 77.0 77.0	0 65 70 75 80 80 90 91 95		40 60 ₩€=90 80/9°7
BOTTOM OF BORING COMPLETED ON 06/27/2019	- 100.4	105		
LEGEND ★ Sample Not Recovered ↓ Standard Penetration Test Modified California Sampler ↓ Modified California Sampler ↓ Surface 1	e-Cement Grout e-Cement Grout e Chips/Pellets Concrete Seal	Plasti Plasti 7-085(1 McKenzie	20 ♦ % Fines (● % Water (c Limit ● Natural Water (hoe Bend Land 10) 127, PCN County, North	40 60 co.or55mm) Content Liquid Limit Content dslide 22304 Dakota
 NOTES NOTES Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. Groundwater level, if indicated above, is for the data constituted of the subsurface above. 	, abbreviations and er understanding of the	LOG OF E	BORING RE	P-127-09 102116-200
S. Groundwater level, if Indicated above, is for the date specified a 4. USCS designation is based on visual-manual classification and	selected lab testing.	SHANNON & W Geotechnical and Environr	FIG. A-4 Sheet 2 of 2	

Total Depth: 111 ft. Northing: 234,136 ft. Top Elevation: 2197.7 ft. Easting: 1,288,062 ft. Vert. Datum: NAD 1983 Station:	_ Dril _ Dril _ Dril _ Oth	lling M lling C Il Rig I ner Co	lethod: ompar Equipm mmen	ny: nent: ts:	<u>HSA to Mud Rotary</u> Hole Diam.: <u>8 in.</u> <u>Interstate Drilling Service</u> Rod Type.: <u>AWJ</u> <u>Diedrich D-50 Track Rig</u> Hammer Type: <u>Automatic</u> <u>To mud rotary at 25.0 feet</u>				
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 020	ANCE (blows/foot) 140 lbs / 30 inches 40 60	
Medium stiff to very stiff, brown, <i>Fat Clay with</i> <i>Sand (CH)</i> to <i>Fat Clay (CH);</i> moist; trace carbonaceous fragments. Landslide Debris			5.3 S-2 S-1			5 10		−	> ⁷³
DISPLACED COAL: extremely weak, black; wet (Displaced Sentinel Butte Formation).	16.0		°⊥						
DISPLACED CLAYSTONE: extremely weak, gray; massive; moderately to slightly weathered (Displaced Sentinel Butte Formation). [Stiff to very stiff, <i>Fat Clay (CH);</i> moist.]	- 20.0		S-5	g Drilling \<		20	•		
 Carbonaceous from 30.4 to 30.8 feet and green-gray, blocky from 30.8 to 31.0 feet. DISPLACED CLAYSTONE: extremely weak to 	33.0		9-S	Durin Durin		30			100 LL=134
very weak, gray; laminated; slightly weathered (Displaced Sentinel Butte Formation). [Very stiff to hard, <i>Lean Clay (CL);</i> moist.]			S-7			35	•	81/7*2	
			8-S 6-S			40			> ¹⁰⁰
CONTINUED NEXT SHEET	49.6						0	WC=101	
* Sample Not Recovered Standard Penetration Test Modified California Sampler Modified California California California Surface Crowed	ter Scre e-Cemer e Chips/I Concrete	en and ht Grou Pellets e Seal	Sand Fi	ilter Г			 ♦ % Fines (♥ % Water Plastic Limit ■ ● Natural Water (<0.075mm) Content - Liquid Limit Content	
	♀ Ground Water Level ATD							dslide 22304 1 Dakota	
<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions. 2. The discussion in the text of this report is necessary for a proper understanding of the						LO	g of Boring Ri	P-127-10	
 a notice of the subsurface materials. Groundwater level, if indicated above, is for the date specified and may vary. 						February 2020 102116-200			
4. USCS designation is based on visual-manual classification and	selected	lab te	sting.		SH Geot	ANN	NON & WILSON, INC. al and Environmental Consultants	FIG. A-5 Sheet 1 of 3	

	Total Depth: 111 ft. Northing: 234,136 ft. Top Elevation: 2197.7 ft. Easting: 1,288,062 ft. Vert. Datum: NAD 1983 Station:	_ Dril _ Dril _ Dril _ Dril _ Oth	ling M ling C I Rig I ler Cc	lethod: company: Equipme omments:	<u>HS</u> <u></u>	SA to M erstate edrich E mud ro	<u>ud Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: <u>D-50 Track Rig</u> Hammer Typ otary at 25.0 feet	8 in. AWJ Automatic	
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 0 20	ANCE (blows/foot) 140 lbs / 30 inches 40 50/60	
	DISPLACED COAL: very weak, black (Displaced Sentinel Butte Formation). DISPLACED CLAYSTONE: extremely weak, gray; laminated; slightly weathered; trace carbonaceous fragments (Displaced Sentinel Butte Formation).	- 52.0		S-11 S-10		55	•	50/5.2	
	[Hard, <i>Fat Clay (CH);</i> moist.]			°.12		60	•		-
				4 — 		65	• -		100 LL=122
	DISPLACED CLAYSTONE: extremely weak,	73.0		15		70			95
	Butte Formation). [Hard, <i>Fat Clay (CH);</i> moist; trace to few sand.] DISPLACED CLAYSTONE: extremely weak, gray; laminated; slightly weathered; 30 degree laminations (Displaced Sentinel Butte	77.5		\$ 		80			LL=100 98 LL=65
	Formation). [Hard, <i>Fat Clay (CH);</i> moist.]					85	•		
	POTENTIALLY DISPLACED COAL: extremely weak, black (Potentially Displaced Sentinel Butte Formation).	95.3		S-19 S-19		90			
SHAN_WIL.GDT 2/4/20	CONTINUED NEXT SHEET LEGEND Sample Not Recovered Standard Penetration Test Modified California Sampler Modified California Sampler Q Ground Q Ground	ter Scree e-Cemer e Chips/f Concrete Water Le	en and nt Grou Pellets e Seal evel AT	Sand Filte	r		0 20 ♦ % Fines (● % Water Plastic Limit Natural Water (Horseshoe Bend Lan		
6-200 HSB.GPJ	NOTES	abbrovi	ations	and		N	7-085(110) 127, PCN IcKenzie County, North	22304 n Dakota	
JG_E 10211(A refer to Figures A rand A2 for explanation of symbols, codes, definitions. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	ols, codes, abbreviations and					G OF BORING RI	P-127-10	
MASTER_L(Groundwater level, it indicated above, is for the date specified a USCS designation is based on visual-manual classification and 	selected	vary. I lab te	sting.	S	February 2020 102116 SHANNON & WILSON, INC. FIG. 1 Geotechnical and Environmental Consultants Sheet 2			

Total Depth: 111 ft. Northing: 234,136 ft. Top Elevation: 2197.7 ft. Easting: 1,288,062 ft. Vert. Datum: NAD 1983 Station:	_ Drill _ Drill _ Drill _ Othe	ing N ing C Rig I er Co	lethod: compan Equipm omment	y: _ ient: _ :s: _	HSA Inters Diedr To m	to Mi state rich E oud ro	<u>ud Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: D <u>-50 Track Rig</u> Hammer Type tary at 25.0 feet	8 in. 	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: _1 0 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60	
POTENTIALLY DISPLACED CLAYSTONE: extremely weak, gray to green-gray; laminated; slightly weathered to fresh (Potentially Displaced Sentinel Butte Formation). [Hard, <i>Fat Clay (CH);</i> moist.]			s-20			105			
BOTTOM OF BORING COMPLETED ON 06/26/2019	111.0		S-21		110	ŀ			
						115			
					120 125	120			
						125			
						130			
						135			
						140			
						145			
	er Scree -Cemen Chips/F Concrete	n and t Grou Pellets Seal	Sand Fil t	lter				0 20 ◇ % Fines (< ● % Water (Plastic Limit H—●— Natural Water (40 60 0.075mm) Content Liquid Limit Content
∑ Ground V	Vater Le	D			M	Horseshoe Bend Land 7-085(110) 127, PCN IcKenzie County, North	dslide 22304 Dakota		
<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The discussion in the text of this report is necessary for a proper	abbreviations and					LO	g of Boring RF	P-127-10	
nature of the subsurface materials. 3. Groundwater level, if indicated above, is for the date specified a	nd may v	/ary.			February 2020 102116			102116-200	
4. USCS designation is based on visual-manual classification and s	selected	lab te	sting.		SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet 3			FIG. A-5 Sheet 3 of 3	

Total Depth: 91 ft. Northing: 233,675 ft. Top Elevation: 2267.9 ft. Easting: 1,288,771 ft. Vert. Datum: NAD 1983 Station:	_ Drill _ Drill _ Drill _ Oth	ing N ing C Rig I er Co	lethod: company Equipmon omments	<u>HS</u> y: <u>Inte</u> ent: <u>Die</u> s: <u>To</u>	A to M erstate drich E mud ro	<u>ud Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: <u>D-50 Track Rig</u> Hammer Typ ptary at 15.0 feet	<u>8 in.</u> <u>AWJ</u> e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 020	ANCE (blows/foot) 140 lbs / 30 inches 40 60
Medium stiff to stiff, brown to gray, <i>Lean Clay (CL);</i> moist; trace sand. Landslide Debris			S-3 S-2 S-1		5 10 15		99
Stiff, dark brown, <i>Fat Clay (CH);</i> moist; trace sand; few to little carbonaceous fragments. Landslide Debris	17.0		\$.⊥		20	▲	97 •
DISPLACED CLAYSTONE: extremely weak, brown; laminated; moderately weathered; 60 degree laminations (Displaced Sentinel Butte Formation).	28.0		s S-2		25	•	
DISPLACED COAL: extremely weak, black (Displaced Sentinel Butte Formation). DISPLACED CLAYSTONE: extremely weak, brown: laminated: mederately weathered; 60 to	32.0		s-7 s-6		30	•	WC=77
70 degree laminated, inductately weathered, or to 70 degree laminations (Displaced Sentinel Butte Formation). [Stiff to hard, <i>Lean Clay (CL);</i> moist; trace sand.]	43.0		°. 8°. 1.	ered During Drilling	40	* 19	99
- Gray well cemented layer from 35.5 to 36.0 feet. POTENTIALLY DISPLACED CLAYSTONE: extremely weak, gray; laminated; slightly				vater Not Encount	45 50		
weathered (Sentinel Butte Formation). [Stiff to hard, <i>Fat Clay (CH)</i> to <i>Lean Clay (CL);</i> moist.]			÷⊥*	Groundv	55		
CONTINUED NEXT SHEET						0 20 ◇ % Fines (● % Water Plastic Limit Natural Water (40 60 <0.075mm) Content I Liquid Limit Content
					N	Horseshoe Bend Lan 7-085(110) 127, PCN IcKenzie County, North	dslide 22304 n Dakota
	abbrevia r unders	ations tandin	and g of the		LO	g of Boring Ri	P-127-11
 The discussion in the text of this report is necessary for a proper understanding of the nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified and may vary. USCS designation is based on visual-manual classification and selected lab testing. 				Fe SI Ge	February 2020 102116-2 SHANNON & WILSON, INC. FIG. A Geotechnical and Environmental Consultants Sheet 1 of		

Total Depth: 91 ft. Northing: 233,675 ft. Top Elevation: 2267.9 ft. Easting: 1,288,771 ft. Vert. Datum: NAD 1983 Station:	_ Dril _ Dril _ Dril _ Oth	ling N ling C I Rig I ier Co	lethod: ompan Equipm mment	<u>HS</u> y: <u>Inte</u> ent: <u>Die</u> s: <u>To</u>	HSA to Mud Rotary Hole Diam.: 8 in. Interstate Drilling Service Rod Type.: AWJ Diedrich D-50 Track Rig Hammer Type: Automatic To mud rotary at 15.0 feet Image: Comparison of the service of		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 0 20	ANCE (blows/foot) 140 lbs / 30 inches 40 60
POTENTIALLY DISPLACED CLAYSTONE (continued) POTENTIALLY DISPLACED SILTSTONE: extremely weak, brown to tan; laminated; slightly weathered (Sentinel Butte Formation).	63.0		S-13 S-13		65		
POTENTIALLY DISPLACED CLAYSTONE: extremely weak, gray; laminated; slightly weathered (Sentinel Butte Formation). [Very stiff to hard, <i>Lean Clay (CL);</i> moist.]	- 73.0		6 S-15 S-14		70	• • •	
POTENTIALLY DISPLACED SANDSTONE:	- 88.0		8 S-17 S-17		80	•	
extremely weak, brown to tan; laminated; slightly weathered (Sentinel Butte Formation). [Medium dense, <i>Silty Sand (SM);</i> moist.] BOTTOM OF BORING COMPLETED ON 06/29/2019	91.0		\$ 		90		
					100 105		
					110 115		
LEGEND ★ Sample Not Recovered ⊥ Standard Penetration Test Modified California Sampler						0 20 ♦ % Fines (● % Water Plastic Limit Natural Water	40 60 <0.075mm) Content -1 Liquid Limit Content
NOTES					M	Horseshoe Bend Lan 7-085(110) 127, PCN IcKenzie County, North	dslide 22304 n Dakota
 Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions. The discussion in the text of this report is necessary for a proper understanding of the nature of the subsurface materials. 					LO		P-127-11
 Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and 	and may selected	vary. I lab te	sting.	S Ge	February 2020 102116-20 SHANNON & WILSON, INC. FIG. A-6 Geotechnical and Environmental Consultants Sheet 2 of 2		

Total Depth: 80.8 ft. Northing: 1,121 ft. Top Elevation: 2350 ft. Easting: 13,113 ft. Vert. Datum: NAD 1983 Station:	Dril Dril Dril Oth	lethod: ompar Equipn mmen	: ny: nent its:	<u>HQ</u> Sali Bur	Casin sbury ley	ag Advance Hole Diam.: 4.5 in. a & Associates Rod Type.: NWJ Hammer Type: Cathead	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples		Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
Very soft to soft, gray to brown, <i>Fat Clay (CH);</i> moist to wet; few carbonaceous fragments. Landslide Debris.	11.0		S-4 S-3 S-2 S-1 50			5	
CLAYSTONE: extremely weak, gray; laminated; slightly weathered to fresh (Sentinel Butte Formation). [Verv stiff, <i>Fat Clay (CH)</i> ; moist.]			s-e s-5			15	
COAL: extremely weak, black (Sentinel Butte	- 24.7		S-8 R-1 S-7 			20 25	
Formation). - Very close to close spaced bedding joints at 0 degrees, smooth, and planar.			R-3 S-9 R-2 म	rilling.		30	
CLAYSTONE: extremely weak, gray; laminated; fresh; trace carbonaceous fragments (Sentinel Butte Formation).	- 34.8		R-4 S-10	ncountered During D		35 40	
- Green-gray from 35.0 to 35.7 feet.			R-6*S-11 R-5 [*]	Groundwater Not E		45	
			S-13 S-12			50 55	
CONTINUED NEXT SHEET	59.0						0 20 40 60 80 100
★ Sample Not Recovered □ □ □ Piezono □ Standard Penetration Test □ □ Bentoni ⑤ ③ ③ ○.D. Thin-Walled Tube ⊠ ⊠ Bentoni □ Rock Core ☑ Surface	eter Scre te-Cemer te Chips/ Concrete	en and nt Grou Pellets e Seal	Sand F t	ilter			 ♦ % Fines (<0.075mm) ● % Water Content → (use scale at top) Plastic Limit ↓ Liquid Limit ↓
L∃ Grab Sample ⊻ Ground	Ground Water Level in VWP						Horseshoe Bend Landslide 7-085(110) 127, PCN 22304 //cKenzie County, North Dakota
<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions. 2. The discussion in the text of this report is necessary for a proper understanding of the						LO	G OF BORING RP-127-12
nature of the subsurface materials. 3. Groundwater level, if indicated above, is for the date specified and may vary. 4. USCS designation is based on visual-manual classification and selected lab testing.					February 2020 102116-200 SHANNON & M/I SON INC. EIC. A.7		
					Geo	otechnic	cal and Environmental Consultants Sheet 1 of 2

Total Depth: 80.8 ft. Northing: 1,121 ft. Top Elevation: 2350 ft. Easting: 13,113 ft. Vert. Datum: NAD 1983 Station:	_ Dril _ Dril _ Dril _ Oth	lling M lling C Il Rig I ner Co	lethod: company Equipmo omments	_ <u></u> /: <u>Sa</u> ent: <u>Ba</u> s:	Q Casir alisbury urley	ng Advance Hole Di & Associates Rod Typ Hamme	am.: ɔe.: ŀr Type:	4.5 in. NWJ Cathead				
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RE ▲ Hammer Wt. & Dro 0 20	SISTANO op: <u>140 I</u> 4	CE (blows/foot) <u>bs / 30 inches</u> 060				
COAL: very weak, black. CLAYSTONE: inferred from drilling fluid.	- 61.0 62.0 63.0		5 S-14		65			50/6 • • • • • • • • • • • • • • • • • • •				
CLAYSTONE: extremely weak, gray; laminated; fresh; trace carbonaceous fragments; interbedded siltstone layers (Sentinel Butte Formation)				S-16		70						
[Hard, Fat Clay (CH); moist.]			±-1		75	•						
SANDSTONE: very weak, gray; massive; fresh (Sentinel Butte Formation).	- 78.0 - 80.8		了. S-18		80	NP	~	50/3"				
BOTTOM OF BORING COMPLETED ON 08/15/2019					85							
					90							
					100							
					105							
									110			
					115							
LEGEND ★ Sample Not Recovered ☐ Piezome ☐ Standard Penetration Test Standard Penetration Test Bentonit ⑤ 3" O.D. Thin-Walled Tube Bentonit Ø Deadle Gene Ø Piezome	eter Scree e-Cemer e Chips/	en and nt Grou Pellets	Sand Filt	er		0 20 40 ⊠ RQD (%) ◇ % Fine: ● % Wate Plastic Limit ⊢	60 22 Re 3 (<0.075m 27 Content → 1	80 100 200very (%) 100 200very (%) 100 200 200 200 200 200 200 200				
ر المراجع Surface (الأعلى الأعلى Surface (الأعلى الأعلى Surface (الأعلى ا الأعلى الأعلى الأعل الأعلى الأعلى الأعل الأعلى الأعلى الأعلى الأعلى الأعلى الأعلى الأعلى المالي المالي المالي المالي المالي المالي المالي ال	Concrete	e Seal	VWP		N	Horseshoe Bend 7-085(110) 127, F IcKenzie County, N	Landsli 2CN 223	ide 304 akota				
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The discussion in the text of this report is necessary for a property of the symbols.	<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions.						RP- 1	127-12				
ature of the subsurface materials. 3. Groundwater level, if indicated above, is for the date specified a	 The discussion in the text of this report is necessary for a proper understanding of the nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified and may vary.)2116-200				
4. USCS designation is based on visual-manual classification and 4	9		NON & WILSON, IN cal and Environmental Consultar	IC.	FIG. A-7 Sheet 2 of 2							

Total Depth: 91 ft. Northing: 234,929 ft. Top Elevation: 2327.8 ft. Easting: 1,287,144 ft. Vert. Datum: NAD 1983 Station:	_ Dri _ Dri _ Dri _ Otł	lling N lling C Il Rig I ner Co	lethod: ompan Equipm mment	iy: ient: ts:	HSA to M Interstate Diedrich E To mud rc	<u>ud Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: <u>D-50 Track Rig</u> Hammer Typ tary at 15.0 feet	8 in. AWJ De: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 0 20	FANCE (blows/foot) 140 lbs / 30 inches 40 60
8 inches of Asphalt over 10 inches of Road Base. Medium dense, brown, <i>Clayey Sand with</i>	0.7 1.5		<u>1</u> -2-		5	••••••••••••••••••••••••••••••••••••••	
Stiff, mottled brown, <i>Fat Clay (CH);</i> moist; few carbonaceous fragments and bedrock	- 7.0 - 10.5		2-2 ⊥		10	· · · · · · · · · · · · · · · · · · ·	
Soft to medium stiff, brown, <i>Fat Clay (CH);</i> moist; trace sand. Colluvium	- 17.0		3		15	•	99 •••••••••••••••••••••••••••••••••••
(Sentinel Butte Formation). [Very stiff, <i>Fat Clay (CH);</i> moist.]	- 23.0		°.4 4		20	•	
SANDSTONE: extremely weak, brown to light brown; laminated; moderately weathered (Sentinel Butte Formation).	20.0		∑-2 S-2		25		LL=64
[Medium dense, <i>Clayey Sand (SC);</i> moist.] COAL: extremely weak, black (Sentinel Butte Formation).	- 31.0 - 33.0		8- S-6		30	4	
CLAYSTONE: extremely weak, brown to gray; laminated; moderately to slightly weathered; interbedded sandstone from 33 to 45 feet; trace to few carbonaceous fragments (Sentinel Butto Formation)			S-8 S-7 S-7 S-7		35 40	• •	
[Very stiff to hard, <i>Fat Clay (CH);</i> moist; trace sand.]			°-0 °-0		45	10	99
			°-10		50	•	
SANDSTONE: continued on next page.	55.0		2. 2. 2.		55	•	
<u>LEGEND</u> * Sample Not Recovered	I Water Le	evel AT	D	<u>-</u>		0 20 ♦ % Fines ● % Water Plastic Limit Natural Water	(<0.075mm) Content ⊣ Liquid Limit Content
NOTES					N	Horseshoe Bend Lar 7-085(110) 127, PCN IcKenzie County, Nort	ndslide 22304 h Dakota
<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions. 2. The discussion in the text of this report is necessary for a proper understanding of the						g of Boring R	P-128-04
nature of the subsurface materials. 3. Groundwater level, if indicated above, is for the date specified a		February 2020 102116-200					
4. USCS designation is based on visual-manual classification and	selected	d lab te	sting.		SHANN Geotechnica	NON & WILSON, INC. al and Environmental Consultants	FIG. A-8 Sheet 1 of 2

	Total Depth: 91 ft. Northing: 234,929 ft. Top Elevation: 2327.8 ft. Easting: 1,287,144 ft. Vert. Datum: NAD 1983 Station:	Drilling Method: Drilling Company Drill Rig Equipm Other Commente		ny: _ nent: _ ts: _	HSA to M Interstate Diedrich I To mud ro	<u>ud Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: <u>D-50 Track Rig</u> Hammer Typ Dtary at 15.0 feet	<u>8 in.</u> <u>AWJ</u> e: <u>Automatic</u>	
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 0,20	ANCE (blows/foot) 140 lbs / 30 inches 40 60
	SANDSTONE: extremely weak, brown to gray; laminated; moderately to slightly weathered (Sentinel Butte Formation).	62.0		113 −13 −13 −13	During Drilling	65		687111
	CLAYSTONE: extremely weak, brown to gray; laminated; moderately to slightly weathered	68.0		°±4 84		70	NP	91
	(Sentinel Butte Formation). [Very stiff, <i>Fat Clay (CH);</i> moist.] COAL: very weak, black (Sentinel Butte	- 76.0		T.55		75	•	
	SILTSTONE: extremely weak to very weak, brown; laminated carboanceous fragments; slightly weathered (Sentinel Butte Formation).			s-16 ⊥		80		W€⊨113 50/3*▲
	[Dense to very dense, <i>Silt (ML);</i> moist; few sand.]	85.5		±21		85	•	
	(Sentinel Butte Formation). CLAYSTONE: extremely weak, gray to green-gray; laminated; slightly weathered; interbedded sandstone: trace carbonaceous	91.0		₹. 18 18		90	1 ••	99 LL=78
	fragments (Sentinel Butte Formation). [Very stiff to hard, <i>Fat Clay (CH);</i> moist; trace sand.]					95		
	BOTTOM OF BORING COMPLETED ON 06/28/2019					105		
						110		
						115		
DT 2/4/20	LEGEND ★ Sample Not Recovered ♀ Ground T Standard Penetration Test	Water Le	evel AT	D			0 20	40 60 <0.075mm) Content
SHAN_WIL.GI		Г		Plastic Limit Natural Water	H Liquid Limit Content dslide			
-200 HSB.GPJ	NOTES		N	7-085(110) 127, PCN IcKenzie County, North	22304 n Dakota			
OG_E 102116	 Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions. The discussion in the text of this report is necessary for a proper understanding of the nature of the subsurface materials. 						G OF BORING RI	P-128-04
MASTER_L	 Groundwater level, in indicated above, is for the date specified USCS designation is based on visual-manual classification and 	anu may I selected	vary. I lab te	sting.		SHANN Geotechnic	NON & WILSON, INC. al and Environmental Consultants	FIG. A-8 Sheet 2 of 2

Appendix B

Current Laboratory Test Results

CONTENTS

B.1	Introd	uction	B-1
B.2	Geote	chnical Tests	B-1
	B.2.1	Water Content	B-1
	B.2.2	Grain Size Distribution and Hydrometer Analyses	B-1
	B.2.3	Atterberg Limits	B-2
	B.2.4	Corrosion	B-2

Table

Table B-1:	Summary of	of Laboratory	Test Results b	y Boring
		J		J - 0

Figures

Figure B-1:	Grain Size Distribution
Figure B-2:	Plasticity Chart

B.1 INTRODUCTION

Laboratory tests were completed on soil samples retrieved from the boring in general accordance with the American Association of State Highway and Transportation Officials (AASHTO) and ASTM International (ASTM) testing methods. The laboratory testing program was performed to classify the materials into similar geologic groups and provide data that can be used for design of the project. The geotechnical laboratory testing was performed at our laboratory in Denver, Colorado and by Colorado Analytical Laboratories, Inc. A summary of the laboratory test results is presented in Table B-1. The following sections describe the laboratory testing procedures.

B.2 GEOTECHNICAL TESTS

B.2.1 Water Content

Water content was determined on samples retrieved from the borings in general accordance with ASTM D2216, Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. To perform this test, a sample was weighed before and after oven-drying, and the water content was calculated. Water contents are shown graphically on the boring logs presented in Appendix A and are also summarized in Table B-1.

B.2.2 Grain Size Distribution and Hydrometer Analyses

The grain size distribution of selected samples was determined in general accordance with ASTM D6913, Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. Results of these analyses are presented as grain size distribution curves on Figure B-1; gravel, sand, and fines fractions are summarized in Table B-1. For select samples, only the fines content (percentage by mass of particles passing the U.S. Standard No. 200 Sieve or 0.075-millimeter opening) was determined. Fines content analysis testing was completed in accordance with ASTM D1140, Standard Test Methods for Amount of Material in Soils Finer than No. 200 (75-µm) Sieve. The percent fines (silt and clay-sized particles passing the No. 200 sieve) are shown graphically on the boring logs in Appendix A and are also summarized in Table B-1.

B.2.3 Atterberg Limits

Soil plasticity was determined by performing Atterberg limits tests on selected fine-grained samples. The tests were completed in general accordance with ASTM D4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. The Atterberg limits include liquid limit (LL), plastic limit (PL), and plasticity index (PI); PI equals LL minus PL. These indices are used to assist in classification of soils, to indicate soil consistency (when compared to natural water content), and to provide correlation to soil properties. The results of the Atterberg limits tests are plotted on a plasticity chart in Figure B-2, shown graphically in the boring logs in Appendix A, and summarized in Table B-1.

B.2.4 Corrosion

Corrosion testing of select samples was performed by Colorado Analytical for pH, resistivity, sulfate content, and chloride content. Testing for pH were done in general accordance with ASTM G51-77 and resistivity were done in general accordance with AASHTO T288-91. Sulfate and chloride content testing was done in accordance with AASHTO T290-91 / ASTM D4327 and AASHTO T291-91 / ASTM D4327, respectively. Test results for sulfate and chloride content are given in units of percent by weight. The test results are summarized in Table B-1.

SAMPLE DATA						GRAIN SIZE ANALYSIS				ATTERBERG LIMITS			CORROSION SUITE			
Depth			Water													
Boring	Sample	Top (feet)	Bottom (feet)	USCS Classification	Content (%)	Gravel (%)	Sand (%)	Fines⁴ (%)	Liquid Limit	Plastic Limit	Plasticity Index	pН	Resistivity (omh-cm)	Sulfates (%)	Chlorides (%)	
	S-1	4.5	6.0	CL	19.5			100	44	15	29					
	S-2	9.5	11.0	СН	23.6			100	66	17	49					
	S-3	14.5	16.0		26.1											
	S-5	24.5	26.0		24.1											
	S-6	29.5	31.0		24.2											
	S-7	34.5	35.5	ML	27.9			61	31	27	4					
	S-8	39.5	41.0		34.6											
	S-9	44.5	46.0		29.8											
	S-10	49.5	51.0		29.7											
RP-127-08	S-11	54.5	55.5	СН	29.5			99	139	24	115					
	S-12	59.5	61.0		24.5											
	S-13	64.5	66.0		24.7											
	S-14	69.5	71.0		28.0											
	S-15	74.5	76.0	СН	26.1			99	86	17	69					
	S-16	79.5	81.0		24.8											
	S-17	84.5	86.0		27.5											
	S-18	89.5	91.0		25.6											
	S-19	94.5	95.5		23.3											
	S-20	99.5	101.0	СН	26.3			99	87	15	72					

Table 1 - Summary of Laboratory Testing

SAMPLE DATA						GRAIN	SIZE AN	ALYSIS	ATTERBERG LIMITS			CORROSION SUITE			
	Depth			Water											
Boring	Sample	Top (feet)	Bottom (feet)	USCS Classification	Content (%)	Gravel (%)	Sand (%)	Fines ⁴ (%)	Liquid Limit	Plastic Limit	Plasticity Index	pН	Resistivity (omh-cm)	Sulfates (%)	Chlorides (%)
	S-1	4.5	6.0		23.0										
	S-2	9.5	11.0	CL	22.2			85	39	20	19				
	S-3	14.5	16.0		23.9										
	S-4	19.5	21.0	CH	23.5			89	55	14	41				
	S-5	24.5	26.0		24.4							7.8	315	0.249	0.0021
	S-6	29.5	30.5	СН	23.6			99	88	17	71				
	S-7	34.5	36.0		30.8										
	S-8	39.5	41.0		98.6										
	S-9	44.5	46.0	СН	24.8	0	6	78 / 16	71	19	52				
	S-10	49.5	51.0		25.5										
KP-127-09	S-11	54.5	55.5	СН	29.5	0	0	52 / 48	91	18	73				
	S-12	59.5	61.0		22.2										
	S-13	64.5	66.0		26.9										
	S-14	69.5	71.0		24.8										
	S-15	74.5	76.0		89.8										
	S-16	79.5	81.0	СН	23.8	0	9.1	71 / 20	82	14	68				
	S-17	84.5	85.5		23.8										
	S-18	89.5	91.0		22.0										
	S-19	94.5	96.0		27.0							9.2	675	0.01	0.0021
	S-20	99.5	100.4		21.4										

Table 1 - Summary of Laboratory Testing
Table 1 - Summary of Laboratory	Testing
---------------------------------	---------

	SAMPLE DA	ATA				GRAIN	SIZE AN	ALYSIS	ATT	ERBERG LI	MITS		CORROS	SION SUITE	
		De T	epth		Water	A	. .	4		-				o 15 i	
Boring	Sample	l op (feet)	Bottom (feet)	USCS Classification	Content (%)	Gravel (%)	Sand (%)	Fines" (%)	Liquid Limit	Plastic Limit	Plasticity Index	pН	Resistivity (omh-cm)	Sulfates (%)	Chlorides (%)
	S-1	4.5	6.0	СН	24.6			73	58	17	41				
	S-2	9.5	11.0		29.3										
	S-3	14.5	16.0		25.8			96							
	S-4	19.5	21.0		34.7										
	S-5	24.5	25.5		29.7							9.6	691	0.025	0.002
	S-6	29.5	31.0	СН	31.0	0	0	42 / 58	134	21	113				
	S-7	34.5	35.6		23.1										
	S-8	39.5	41.0		25.6										
	S-9	44.5	46.0	CL	27.8	0	0	68 / 32	48	18	30				
	S-10	49.5	50.5		101.1										
RP-127-10	S-11	54.5	56.0		25.8										
	S-12	59.5	61.0		25.8										
	S-13	64.5	66.0	СН	27.1			100	122	31	91				
	S-14	69.5	71.0		23.9										
	S-15	74.5	75.5	СН	22.1			95	100	20	80				
	S-16	79.5	81.0	СН	24.1	0	2	76/22	65	19	46				
	S-17	84.5	86.0		21.9										
	S-18	89.5	91.0		22.4										
	S-19	94.5	95.5		34.1										
	S-20	99.5	101.0									9.4	540	0.018	0.0024
	S-21	109.5	111.0	СН	21.5			100	87	19	68				

	SAMPLE DA	ATA	J	5		GRAIN	SIZE AN	ALYSIS	ATT	ERBERG L	MITS		CORROS	SION SUITE	
		De	epth		Water										
Boring	Sample	Top (feet)	Bottom (feet)	USCS Classification	Content (%)	Gravel (%)	Sand (%)	Fines ⁴ (%)	Liquid Limit	Plastic Limit	Plasticity Index	рН	Resistivity (omh-cm)	Sulfates (%)	Chlorides (%)
	S-1	4.5	6.0		22.2										
	S-2	9.5	11.0	CL	23.8			99	40	19	21				
	S-3	14.5	16.0		24.7										
	S-4	19.5	21.0	СН	37.0			97	81	34	47				
	S-5	24.5	26.0		22.1										
	S-6	29.5	31.0		76.6										
	S-7	34.5	36.0		19.2										
	S-8	39.5	41.0	CL	22.6			85 / 15	39	20	19				
RP-127-11	S-9	44.5	45.5	СН	25.0			60 / 40	53	19	34				
	S-10	49.5	51.0		25.5										
	S-12	59.5	61.0		24.3										
	S-13	64.5	66.0		14.8										
	S-14	69.5	71.0	ML	10.4			60	NV	NP					
	S-15	74.5	76.0		23.3										
	S-16	79.5	81.0	CL	25.1			100	49	20	29				
	S-17	84.5	86.0		24.3										
	S-18	89.5	91.0	SM	24.3			44	NV	NP					

Table 1 - Summary of Laboratory Testing

	SAMPLE D	ATA				GRAIN	SIZE AN	ALYSIS	ATT	ERBERG L	MITS		CORROS	SION SUITE	
		De	epth		Water										
Boring	Sample	Top (feet)	Bottom (feet)	USCS Classification	Content (%)	Gravel (%)	Sand (%)	Fines ⁴ (%)	Liquid Limit	Plastic Limit	Plasticity Index	pН	Resistivity (omh-cm)	Sulfates (%)	Chlorides (%)
	S-1	2.5	4.0		44.0										
	S-2	4.6	6.6		40.0										
	S-3	7.5	9.0	СН	38.2			95	54	18	36				
	S-4	9.6	11.2		45.8										
	S-5	12.5	14.0	СН	24.2			100	68	19	49				
	S-6	15.0	16.5		25.3										
	S-7	20.0	21.5	СН	23.9			100	77	16	61				
	S-8	23.5	23.9		28.0										
DD 107 10	S-9	29.6	30.0		57.4										
11 - 12/-12	S-10	35.0	35.4		27.2										
	S-11	45.0	46.5	СН	25.8			100	75	20	55				
	S-12	50.0	51.5		23.1										
	S-13	55.0	56.5		22.8										
	S-14	60.0	60.5		101.8										
	S-15	65.0	66.5	CL	23.8			98	39	16	23				
	S-16	70.0	71.5		22.1										
	S-17	75.0	76.5		22.1										
	S-18	80.0	80.8	SM	23.8			37	NV	NP					

Table 1 - Summary of Laboratory Testing

	SAMPLE D	ATA				GRAIN	SIZE AN	ALYSIS	ATT	ERBERG L	IMITS		CORROS	SION SUITE	
		De	epth		Water										
Boring	Sample	Top (feet)	Bottom (feet)	USCS Classification	Content (%)	Gravel (%)	Sand (%)	Fines ⁴ (%)	Liquid Limit	Plastic Limit	Plasticity Index	pН	Resistivity (omh-cm)	Sulfates (%)	Chlorides (%)
	S-1	4.5	6.0	SC-SM	5.5	29.7	47.5	23	25	17	8				
	S-2	9.5	11.0		20.0										
	S-3	14.5	16.0	СН	18.6			99	50	19	31				
	S-4	19.5	21.0		29.6										
	S-5	24.5	26.0	SC	16.9			41	64	17	47				
	S-6	29.5	31.0		19.1										
	S-7	34.5	36.0		23.0										
	S-8	39.5	41.0		24.0										
0 120 DI	S-9	44.5	46.0	CL	22.0			99	46	18	28				
KF-120-04	S-10	49.5	51.0		21.7										
	S-11	54.5	56.0		18.2										
	S-12	59.5	61.0	SM	27.1			39	NV	NP					
	S-13	64.5	66.0		25.6										
	S-14	69.5	71.0	ML	26.5			91	NV	NP					
	S-15	74.5	76.0		31.8										
	S-16	79.5	81.0		112.6										
	S-17	84.5	86.0		22.6										
	S-18	89.5	91.0	СН	23.4	0	1	69/30	78	18	60				

Table 1 - Summary of Laboratory Testing

NOTES:

1 Refer to Appendix A, Figure A-1 for definitions.

2 Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

3 Silt particles are defined as fines (passing the #200 sieve) larger than 2 µm; clay particles are defined as fines smaller than 2 µm. USCS designation is based on Atterberg limit testing.

4 For samples that hydrometer tests were performed on, silt particles are presented first followed a backslash and by clay fraction values

ohm-cm = ohm-centimeters; NP = Non Plastic ; NV = No Value; pcf = pounds per cubic foot; psf = pounds per square foot; µm = micrometers

FIG. B-2

FIG. B-2

FIG. B-2

FIG. B-2

APPENDIX C: PREVIOUS NDDOT FIELD EXPLORATIONS

Appendix C **Previous NDDOT Field Explorations**

Figures

Figure C-1: HSB1 and HSB2 Field LogsFigure C-2: HSB2 Field LogFigure C-3: HSB4 Field LogFigure C-4: HSB4 Lab Data

7/14/2011 7:58:43 AM gwolter R:\project\70085127.063\material\Design\Boring Log.dgn

FIG

Ģ

STATE	PROJECT NO.	SECTION NO.	SHEET NO.
ND	SER-7-085(063)127	175	1

THE ENCIRCLED NUMBERS INDICATE THE NUMBER OF BLOWS DELIVERED BY A 140 POUND AUTOMATIC HAMMER FROM A HEIGHT OF 30 INCHES TO DRIVE A 2 INCH O.D. SPLIT-BARREL SAMPLER 1 FOOT.

THE BORING DATA SHOWN IS FOR NORTH DAKOTA DEPARTMENT OF TRANSPORTATION'S (NDDOT) DESIGN AND ESTIMATING PURPOSES ONLY. THE BORING LOGS ARE ONLY REPRESENTATIVE OF THE EXACT LOCATION FROM WHICH THE SAMPLES WERE TAKEN AND INTERPRETATION BETWEEN THE SAMPLE LOCATIONS IS DISCOURAGED. THE NDDOT ASSUMES NO RESPONSIBILITY IF THE SOIL CONDITIONS ENCOUNTERED DURING CONSTRUCTION DIFFER FROM THOSE SHOWN. FURTHER SOIL INFORMATION MAY BE AVAILABLE AT:

MATERIALS & RESEARCH DIVISION 30 AIRPORT ROAD BISMARCK, NORTH DAKOTA 58504-6005 PHONE (701)328-6900

qu=Unconfined Compressive Strength (psf)
w=Moisture Content (%)
Ø=Friction Angle (deg)
c=Cohesion (psf)
γd=Dry Density (pcf)
*=These cohesive values and friction angles are estimated from blow counts

This document was originally issued and sealed by Jeff Jirava, Registration Number PE- 5950, on 07/14/11 and the original document is stored at the North Dakota Department of Transportation

BORING LOGS

FIG C-1

× ASS ASS	ASS TENCY (Y/N) (Y/N)
	Ialion 274 4880 ale Slarled 4 - 20 - 11 NCY NCY (YAI) (YAI) (YAI) (YAI)

					Dr: 11 +0 32.0	47 13 270 27 0 100 105 T Smi	Dr. 11 to 27.0	4/ 12 25.0 22.0 41 025 6 14/2 25.0 Brn Ensil House Y N N 1002	25 11 31.0 25.5 0.0 	D, 11 72 75.0	TYPE NO. FROM TO SPT SAMPLE JAR. SAMPLE LIORIZON DEPIH COLOR TEXT. CONSIS. PERM. WATER PLAS. TYPE NO. FROM TO RECOV. NO. NO. FROM 10 CLASS TENCY (YAY) (YAY) (YAY) (YAY)	West Ditch Not Slide Mikenzie 4-20-11	Crew Chiel Boring No. Elevation of Boring Station Oliset	DEEP-FOUNDATION BORING LOG Department of Transportation, Materials & Research Division SFN 10078 (Rev. 11-98)
			. .					5			WATER PLAS- BEAR. TICITY (Y/N) (Y/N)		Olise	
			-	to anges loit.	wont Drill Kest 27.01 South of teeth and bund	very Head, 100 51000 in half tents. Smill pices at Substant in till.		First Ost" Osturbed 1006/02 in0:49" En Sna	Pushed that no keepser		REMARKS	Dale Finished <i>Y = 20 = 11</i>	. Project No.	FIG (Sheet 2

Torvane Shear Str	<u>engths</u>	
Boring No. <u>3</u> Station		Offset
Project No.	Date <u>4-20-11</u>	County Mikenzie

Depth (ît.)	Stress Reading	Factor	Shear Strength (kg/cm ²)	Shear Strength *(lbs/ft ²)
0.2-2.2	.25	m 1.0	0,25.	512.0
5.0-7.0	.25	~ 1.C	0.25	- 512.0
16.0-12.0	.15	m jil	0.15	. 307.2
15.0-17.0	NO Recover	7		
20.0-22.0	,425	5.2.5	1.0625.	2176
				· .
-				
				÷

* $kg/cm^2 \times 2048 = lbs/ft^2$

FIG C-2 Sheet 3 of 3

CO.

86

Crew Citiel	Ierlais & Research Division	Elevation of Boring	Station	Olisei Piojeci No.
J. NAVIM ANN	54			N Tri
Projectitiocation Ling 85 Bottom of west Di	the Between B1, B2	Maken zie	Date Starled	Data Finished
TYPES NO. SOBE: DEELU SPT SAMPLE JAR.	SAMPLE LIORIZON DEP	H COLOR TEXT.	CONSIS- PERM, WATER	PLAS. REMARKS
37.0 2.0	FROM 10	P Sndy	(YAN) (YAN)	(VIN) JorCoal Dep.
1 2:0 6 0, h 0.2 2 1#	1022	Bin singer	Set N N	y torcar Dep.
Dr.11. 6 5-0				
370 3 5.0 7.0 1.15 #2 3 5.0 7.0 1.15	1039 5,0 10.0	Bon Sudy		ID, coal Depi: wood in tip.
2 2 2 1 1 0 0 0 1 h 7#	1035	Bin Sudy Lim	S. H. N N	Y In Split Disturbed
Dri 11 40 10 0				
10 0 12 0 01 0 01 5 5 E A	1036 10.0. 20.	OBIK Cherry sight		Bin Suly Cly in top, Low in Bother no Torume
43 6 12.0 14.0 9. 115 3	1037	BIK. Cont	Loose y i	y Trace of an cly mix.
Dr. 11 + 150				
44 7 150153 013 1	034	Bik Coal		2 solits begged.
4 9:2 00 17:3 15:3 19 4	1039	BIK coal	very V N	N Coal, Coal,
Dc: 11 + 20.0				
74 9 70.0 220 4 2.5 5 1 44 9 10.0 220 4 2.5 5 1	040 20.0 75.1	Ben Sitz	Soft N N	V I to + Coal Dep.
Sci 1 40 2 \$10		1 1		/
1 0.2 0.12 0.12 0.52 01 5 4	0.12 0.22 1h0	BUN CIV LAN BUN CIVLAN		But Tuke
		1		

		-		14
1	E.	121 A	12	A
(105		会に	花
6	11	学		副
	121	12.24	E)	4
		it.		

DEEP.FOUNDATION BORING LOG Department of Transportation, Materials & Research Division SFN 10078 (Rev. 11-98)

COPY

FIG C-3 Sheet 2 of 4

Crew Chiel								Boiling No.	•	Elsyation	ol Baring	Stallon			Oliset		rojaci No.
Projectiboc	allion									County		Date St	arled		1	D	ale Finished
Hury	285											-					
/	0																
SAMPS C	NO. FI	DEE: DI	EP.IU 10	SPT	SAMPLE RECOV.	JAR. NO.	SAMPLE	LIORIZON	DEPIN	COLOR	TEXT; CLASS	CONSIS- TENCY	PERM.	WATER BEAR. (Y/N)	PLAS- TICITY (Y/N)		REMARKS
4		707	2		2 12	-	1047	27.0	300	Bro	City.	Hand	2	2	<	Sal Sta	n in cast 0.5"
7	J K	2				. 6				-		-	3		1		
372		-			1:5			W,)		Tam	Sidi	•				Then on to	P, Gry on Bottom
- 4 -	2 30	200 5	2	N	00		61.01	100	1210	ory	. Cly.cm					- 1 - 1	Philler mains lot
47 /	3 32	-0 3	1 0.4	7	40	7	4401			Gry.	1 hours	キーちょ	2	2	Y	is hand	5 77.
Drill	4	35.0	-	-		-	1	1.14									
1750 J	Ч. 3.	2:031	0.2	-	1.2		1045	1 No. 1		Giry	city has					sidy Cly	[n.
1 84	5.3	0,2 30	12,3		010	8	1046			Gry	sndy in	おける	2	N	×	suly ciy	L
Ni nC	4	0.0h				_					/ .						
3100 M	. 41	0041	2		1.2		6491			6.11	cly Lun					Bent Tube	no to runc
1: 6A	7 41	24	3.24	20	00	9	1048			Gry.	Clycon	St:FF	5	2	<	finest le	yers throughout.
Dr: H	h pt	50		+							1				1.		
374 -10	54 4	24 0			0.1	•	phot -	45.0	46.0	B/K .	(601		X	Y	2	Water Dea	ring
01 01A	5 h [C 4	I I	2 2	2.0	0	oya	46.0	55.0	Gry	Clylon	Havid	N	5	K	Bry cly +	121, 12 1 1 1 0 0 1 1 1 0 0
t TING	25 4	0.0	1	-		_								-		10	
			1														

12

DEEP FOUNDATION BORING L	OG & Research Division	•	•	
Orew Chile!	Boilng No.	lavallon of Boring	Station	Olisei Project No.
		-		
Projecitiocalian		Sounty .	Date Started	Date Finished
Have ES		na mu o por un de la constante		
TYPE NO. FROM TO SPT RAMPLE JAR. SAMI	LE LIORIZON DEPTH	COLOR TEXT: CLASS	CONSIS: PERM. WATER TENCY (YAY) (YAN)	PLAS TICITY (Y/N) REMARKS
= 10 20 50.0 51.2 12 10 50.05 01 #	0.	My Curry MG		Bent Take I not brunning
50/ 11 21 51 2 53 2 15 20 11 105		OTY Grady	Six N N	Y Sady cly cm.
		· ···		
3710 3710 105 100 105 105 105	2 55,0 56.0	Gry to sal		to sol bent late no
20/21035035013 2012 103	3 560 900	Sry Sray.	Stir C	Y Eso suis, suis out to
DC:111 4 58 0 1 1				
37w 24. 370 600 20 20 105		Sry Swaly		Bast True - No Tervane NO Tubes Till Softer.
413 55 60.0 620 15 20 13 105 15 105		Dr.Y Sally	シンとあ	V Swy Cig.
D. 11 to 63.00				
58/4 20 13.0.65 0 13 20 14 1051		ory Cutom	XXX X	Y Snay Cly Cm.
Dri 11 +6 69.0				
401 51 012 H1 014 081 62: 51 4	7	pry Sudy	Sta NN	X snay cily am
V: 10 73,0				
501 91 02 51 024 026 12 14 55		Si Civitian 1	Very N N	y Henry Suit mite
Drilli # 780.				
			-	-

	- 1	1. 6	3.6
•	STU T		E.
10	is por	u di l	At.
all's	A BAR	50	劉
1	10		

DEEP-FOUNDATION BORING LOG Department of Transportation, Materials & Research Division SFN 10078 (Rev. 11-98)

	*		3 · · · · ·		
Uala Finished		Date Started	County		Project/Eocalion
				4	
. Projaci No.	Olisel	Station	Elavation of Boring	· Borlho No.	Craw Chial

T				1	1	1	-	 -	_					5	2000
		-			5			19.11	4			0	Di	114	BAMPS TYPE
					1		E				-	Jak	1 +0	79.	CORE
			1			4				P		2	60	78.0	FNOM
						14					1		0.0	80.0	DEPIL
-	•													13	SPT
-						** • • • •	-	 						. 2.0	SAMPLE
														L'I	JAP
								•	•					1059	SAMPLE
		4		1. 1			14			1. 12				0.08	LIOBIZON
														1	DEPIH
1			• •				-	-	14. 14.				-	Gry	COLOP
				10-01										S. &y	TEXT: CLASS
														Stife	CONSIS- TENCY
								÷	1				-	2	PERM.
		-								•				5	WATER BEAR. (Y/N)
•							-		-					Y.	PLAS- TICITY (Y/N)
				1										Saidy Cig Lun	REMARKS
				•••		-									

Report Number SS	5-52-2011		Date Reported	10/25/2011	Boring No	umber 4
County Me	CKENZIE		Submitted By	Naumann	Project N	umber NH-7-085(063)127
District			Structure Location			PCN
Comments Sample 102	33 Not enougl	h material to do PI test. Sample #	1037 1038 1039 are	coal with no moistur	es or analysis	
Lab Number		1032	1033		1034	1035
Distance From CenterLi	ine (Ft.)	0 ft	0 ft		0 ft	0 ft
Depth, Ft.		0.0 - 2.0	2.0 - 4	0	5.0 - 7.0	7.0 - 9.0
Field Sample No.		1032	1033		1034	1035
% Pass. 3/8" Sieve		100	100		100	100
% Pass. No. 4 Sieve		100	100		100	95
% Pass. No. 10 Sieve		100	100		100	92
% Coarse Sand (-No. 10	+ No.40)	2	0		0	8
% Fine Sand (-No. 40 + 1	No. 200)	14	3		8	18
% Silt (0.074 - 0.005 mm	n)	32	16		32	20
% Clay (-0.005 mm)		52	82		60	45
Liquid Limit (-No. 40)		43	0		59	48
Plasticity Index (-No. 40))	24	0		39	31
Plastic Limit		19	0		20	17
Soil Color		Brn	Brn		Brn	Brn
Textural Class		CLY	CLY		CLY	CLY
Soil Class (AASHTO M-	-145)	A-7-6(20)	A-4(0)	A-7-6(39)	A-7-6(17)
Frost Class		F3	F4		F3	F3
Optimum Moisture (%)						
Maximum Dry Density ((pcf)					
Ph of Soil	-					
% Organic Content						
Pocket Pentrometer						
Depth (Ft.) Mois	sture (%)	I		4	I	
Avg. Moisture (%)	<u>, , , , , , , , , , , , , , , , , , , </u>	14.5	12.6		34.2	30.1

Report Number SS-	-52-2011		Date Reported	10/25/2011	Boring Nu	mber 4
County MC	CKENZIE		Submitted By	Naumann	Project Nu	umber NH-7-085(063)127
District			Structure Location			PCN
Comments Sample 103	3 Not enough mat	erial to do PI test. Sample #	1037 1038 1039 are	coal with no moisture	es or analysis	
Lab Number		1036	1037		1038	1039
Distance From CenterLin	ne (Ft.)	0 ft	0 ft		0 ft	0 ft
Depth, Ft.		10.0 - 12.0	12.0 - 14	4.0	15.0 - 15.3	15.3 - 17.3
Field Sample No.		1036	1037		1038	1039
% Pass. 3/8" Sieve		100	0		0	0
% Pass. No. 4 Sieve		100	0		0	0
% Pass. No. 10 Sieve		100	0		0	0
% Coarse Sand (-No. 10	+ No.40)	0	0		0	0
% Fine Sand (-No. 40 + N	No. 200)	3	0		0	0
% Silt (0.074 - 0.005 mm))	41	0		0	0
% Clay (-0.005 mm)		56	0		0	0
Liquid Limit (-No. 40)		44	0		0	0
Plasticity Index (-No. 40)		26	0		0	0
Plastic Limit		18	0		0	0
Soil Color		Blk	Blk		Blk	Blk
Textural Class		CLY				
Soil Class (AASHTO M-	145)	A-7-6(27)	A-1-a(1	l)	A-1-a(1)	A-1-a(1)
Frost Class		F3	F1		F1	F1
Optimum Moisture (%)						
Maximum Dry Density (pcf)					
Ph of Soil	-					
% Organic Content						
Pocket Pentrometer						
Depth (Ft.) Mois	ture (%)			L	L. L.	
Avg. Moisture (%)	~ /	28.3	0.0		0.0	0.0

Report Number SS-52-	2011	Date Reported	10/25/2011	Boring Number 4
County MCKE	NZIE	Submitted By	Naumann	Project Number NH-7-085(063)127
District		Structure Location		PCN
Comments Sample 1033 N	ot enough material to do PI test. Sample #	‡ 1037 1038 1039 are	coal with no moistures or analysis	
Lab Number	1040	1041	1042	1043
Distance From CenterLine (Ft.) 0 ft	0 ft	0 ft	0 ft
Depth, Ft.	20.0 - 22.0	25.0 - 2	7.0 27.0 - 29	9.0 30.0 - 32.0
Field Sample No.	1040	1041	1042	1043
% Pass. 3/8" Sieve	100	100	100	100
% Pass. No. 4 Sieve	100	100	100	100
% Pass. No. 10 Sieve	100	100	100	100
% Coarse Sand (-No. 10 + N	0.40) 2	0	0	2
% Fine Sand (-No. 40 + No. 2	200) 17	20	16	3
% Silt (0.074 - 0.005 mm)	28	35	44	17
% Clay (-0.005 mm)	53	46	41	78
Liquid Limit (-No. 40)	47	-50	59	79
Plasticity Index (-No. 40)	31	-68	42	58
Plastic Limit	16	18	17	21
Soil Color	Brn Gry	Brn Gry	Blk Brn Bl	k Tan Gry
Textural Class	CLY	CLY	CLY	CLY
Soil Class (AASHTO M-145)) A-7-6(25)	A-4(0) A-7-6(3	7) A-7-6(63)
Frost Class	F3	F4	F3	F3
Optimum Moisture (%)				
Maximum Dry Density (pcf)				
Ph of Soil				
% Organic Content				
Pocket Pentrometer				
Depth (Ft.) Moisture	e (%)			
Avg. Moisture (%)	23.5	20.5	27.7	26.7

Report Number SS-	-52-2011		Date Reported	10/25/2011	Boring No	umber 4
County MC	CKENZIE		Submitted By	Naumann	Project N	umber NH-7-085(063)127
District			Structure Location			PCN
Comments Sample 103	33 Not enough m	aterial to do PI test. Sample #	1037 1038 1039 are	coal with no moistu	ures or analysis	
Lab Number		1044	1045		1046	1047
Distance From CenterLi	ne (Ft.)	0 ft	0 ft		0 ft	0 ft
Depth, Ft.		32.0 - 34.0	35.0 - 36	5.2	36.2 - 38.2	40.0 - 41.2
Field Sample No.		1044	1045		1046	1047
% Pass. 3/8" Sieve		100	100		100	100
% Pass. No. 4 Sieve		100	100		100	100
% Pass. No. 10 Sieve		100	96		98	99
% Coarse Sand (-No. 10	+ No.40)	0	0		0	0
% Fine Sand (-No. 40 + N	No. 200)	1	1		1	3
% Silt (0.074 - 0.005 mm))	42	64		59	59
% Clay (-0.005 mm)		57	31		37	36
Liquid Limit (-No. 40)		84	70		68	59
Plasticity Index (-No. 40))	60	43		46	33
Plastic Limit		24	26		22	26
Soil Color		Gry	Gry		Gry	Gry
Textural Class		CLY	SLTY C	LY	SLTY CLY	SLTY CLY
Soil Class (AASHTO M-	145)	A-7-6(69)	A-7-6(4	8)	A-7-6(50)	A-7-6(36)
Frost Class		F3	F3		F3	F3
Optimum Moisture (%)						
Maximum Dry Density (J	pcf)					
Ph of Soil						
% Organic Content						
Pocket Pentrometer						
Depth (Ft.) Mois	sture (%)			ų.		
Avg. Moisture (%)	· ·	24.5	22.7		24.3	22.0

Report Number SS-	-52-2011		Date Reported	10/25/2011	Boring Nu	imber 4
County MC	CKENZIE		Submitted By	Naumann	Project N	umber NH-7-085(063)127
District			Structure Location			PCN
Comments Sample 103	33 Not enough m	naterial to do PI test. Sample #	1037 1038 1039 are	coal with no moist	ures or analysis	
Lab Number		1048	1049		1050	1051
Distance From CenterLin	ne (Ft.)	0 ft	0 ft		0 ft	0 ft
Depth, Ft.		41.2 - 43.2	45.1 - 47	.1	50.0 - 51.2	51.2 - 53.2
Field Sample No.		1048	1049		1050	1051
% Pass. 3/8" Sieve		100	100		100	100
% Pass. No. 4 Sieve		99	96		100	100
% Pass. No. 10 Sieve		97	95		100	100
% Coarse Sand (-No. 10	+ No.40)	1	1		0	0
% Fine Sand (-No. 40 + N	No. 200)	0	0		24	35
% Silt (0.074 - 0.005 mm))	97	30		53	42
% Clay (-0.005 mm)		0	64		23	22
Liquid Limit (-No. 40)		97	69		72	74
Plasticity Index (-No. 40))	72	44		47	47
Plastic Limit		24	25		25	27
Soil Color		Gry	Gry		Gry	Gry
Textural Class		SLTY LM	CLY		SLTY CLY LM	CLY LM
Soil Class (AASHTO M-	145)	A-7-6(80)	A-7-6(4	7)	A-7-6(37)	A-7-6(29)
Frost Class		F3	F3		F3	F3
Optimum Moisture (%)						
Maximum Dry Density (J	pcf)					
Ph of Soil						
% Organic Content						
Pocket Pentrometer						
Depth (Ft.) Mois	sture (%)					
Avg. Moisture (%)		28.6	30.2		22.3	23.2

Report Number SS-	-52-2011		Date Reported	10/25/2011	Boring Nu	imber 4
County MC	CKENZIE		Submitted By	Naumann	Project N	umber NH-7-085(063)127
District			Structure Location			PCN
Comments Sample 103	33 Not enough	material to do PI test. Sample #	1037 1038 1039 are	coal with no moistu	ures or analysis	
Lab Number		1052	1053		1054	1055
Distance From CenterLin	ne (Ft.)	0 ft	0 ft		0 ft	0 ft
Depth, Ft.		55.0 - 56.0	56.0 - 58	.0	58.0 - 60.0	60.0 - 62.0
Field Sample No.		1052	1053		1054	1055
% Pass. 3/8" Sieve		100	100		100	100
% Pass. No. 4 Sieve		100	100		100	100
% Pass. No. 10 Sieve		100	100		100	100
% Coarse Sand (-No. 10 -	+ No.40)	0	0		1	0
% Fine Sand (-No. 40 + N	No. 200)	62	1		3	0
% Silt (0.074 - 0.005 mm))	14	39		4	22
% Clay (-0.005 mm)		23	59		93	78
Liquid Limit (-No. 40)		58	90		81	91
Plasticity Index (-No. 40))	30	70		52	65
Plastic Limit		27	20		28	26
Soil Color		Gry	Gry		Gry	Gry
Textural Class		SNDY CLY LM	CLY		CLY	CLY
Soil Class (AASHTO M-1	145)	A-7-6(5)	A-7-6(78	3)	A-7-6(59)	A-7-6(76)
Frost Class		F3	F3		F3	F3
Optimum Moisture (%)						
Maximum Dry Density (p	pcf)					
Ph of Soil						
% Organic Content						
Pocket Pentrometer						
Depth (Ft.) Moist	ture (%)	I		H		
Avg. Moisture (%)		19.4	24.5		26.9	24.7

Report Number SS	5-52-2011		Date Reported	10/25/2011	Boring Nu	mber 4
County M	CKENZIE		Submitted By	Naumann	Project Nu	mber NH-7-085(063)127
District			Structure Location			PCN
Comments Sample 10	33 Not enough mater	rial to do PI test. Sample #	1037 1038 1039 are	coal with no moistur	es or analysis	
Lab Number		1056	1057		1058	1059
		0.0	0.0		0.0	0.0
Distance From CenterLi	ine (Ft.)	0 ft	0 ft	-	0 ft	0 ft
Depth, Ft.		63.0 - 65.0	68.0 - 70	0.0	73.0 - 75.0	78.0 - 80.0
Field Sample No.		1056	1057		1058	1059
% Pass. 3/8" Sieve		100	100		100	100
% Pass. No. 4 Sieve		99	100		100	100
% Pass. No. 10 Sieve		99	100		100	100
% Coarse Sand (-No. 10	+ No.40)	0	0		0	0
% Fine Sand (-No. 40 +	No. 200)	0	20		1	2
% Silt (0.074 - 0.005 mn	n)	40	57		63	60
% Clay (-0.005 mm)		59	23		37	38
Liquid Limit (-No. 40)		87	79		74	73
Plasticity Index (-No. 40))	61	56		54	54
Plastic Limit		25	23		20	19
Soil Color		Gry	Gry		Gry	Gry
Textural Class		CLY	SLTY CLY	LM	SLTY CLY	SLTY CLY
Soil Class (AASHTO M	-145)	A-7-6(71)	A-7-6(4	8)	A-7-6(61)	A-7-6(59)
Frost Class		F3	F3		F3	F3
Optimum Moisture (%)						
Maximum Drv Density ((pcf)					
Ph of Soil						
% Organic Content						
Pocket Pentrometer						
Denth (Ft.) Moi	sture (%)		1			
Avg. Moisture (%)		21.9	19.1		22.3	23.7

APPENDIX D: PREVIOUS SHANNON & WILSON FIELD EXPLORATIONS AND LABORATORY DATA

Appendix D

Previous Shannon & Wilson Field Explorations and Laboratory Data

CONTENTS

D.1	Introduction	D-1
D.2	Previous Shannon & Wilson Field Explorations	D-1
D.3	Previous Shannon & Wilson Laboratory Data	D-1

Tables

Table D-1: Summary of Previous Laboratory Test Results by Boring

Figures

Figure D-1 to D-8:	Logs of Borings RP-127-01 to RP-127-07 and RP-127-01A
Figure D-9:	Inclinometer Cumulative Displacement, Boring RP-127-01
Figure D-10:	Inclinometer Cumulative Displacement, Boring RP-127-01A
Figure D-11:	Inclinometer Cumulative Displacement, Boring RP-127-04
Figure D-12:	Inclinometer Cumulative Displacement, Boring RP-127-05
Figure D-13:	Inclinometer Cumulative Displacement, Boring RP-127-07
Figure D-14:	Sondex Extensometer Displacement, Boring RP-127-01A
Figure D-15:	Sondex Extensometer Displacement, Boring RP-127-07

D.1 INTRODUCTION

Shannon & Wilson completed geotechnical studies and laboratory testing over several different time periods starting in November 2014. Field explorations consisted of drilling 57 geotechnical boring that were conducted from:

- December 3, 2014 to January 30, 2015
- September 9, 2015 to November 10, 2015
- July 5, 2016 to August 4, 2016
- March, April, and July 2017, and
- July 2018

Only borings and laboratory data pertinent to the Horseshoe Bend Landslide are presented herein.

D.2 PREVIOUS SHANNON & WILSON FIELD EXPLORATIONS

The previously drilled borings near the Horseshoe Bend vicinity are RP-127-01 through RP-127-07 and RP-127-01A. See Figures D-1 through D-8 for the boring logs and Figure 2 for their location. Of the eight previously drilled borings in this area, five were finished with inclinometers and two were finished with a Sondex settlement system. See Figures D-6 through D-13 for cumulative displacement plots for the borings with inclinometers and see Figures D-14 and D-15 for the Sondex displacement plots. A detailed explanation of the drilling dates and procedures for these explorations can be found in the Geotechnical Data Report (GDR) and A1GDR.

D.3 PREVIOUS SHANNON & WILSON LABORATORY DATA

Various index tests and geotechnical engineering property tests were performed. The laboratory test results are presented in Table D-1. A detailed description of the laboratory testing procedures can be found in the GDR and A1GDR.

	Sample D	АТА							GRAIN S	IZE ANALYSIS	2	ATTERBERG LIMITS				COR	ROSION		TRIAXIAL	TESTING Peak		
Boring	Sample	De Top (feet)	pth Bottom (feet)	USCS Symbol ¹	Moisture Content	Moisture Unit Weight (pcf)	Specific	Gravel	Sand	Fine (75 to 2 um) (%)	s³ (< 2 um) (%)	Liquid Limit	Plastic Limit	Plasticity Limit (%)	nH_	Resistivity	Sulfates	Chlorides	Consolidtion Pressure (psf)	Principal Stress Difference (psf)	Pinhole Testing Dispersiveness Category	Sodium Absorption Ration (SAR) ⁵
Doring	S-1	2.5	4	CH	30.7	(bei)	Gravity	(/0)	(70)	78	(70)	52	16	36	7.5	280	0.39	0.051	(p3i)	(p3i)	Category	
	S-2	5	6.5		30.2																D1	8.4
	S-3	7.5	9		20.4												0.42					
	S-4	10	11.5		31.8																	
	S-5	12.5	14		16.5																	
	S-6	15	17		22.2																	
	S-7	17	18.5	СН	18.7			0	14	59	27	55	15	40							·	
	S-8	20	21.5		18.1																	
	S-9	22.5	24	CL	20.7					88		48	18	30								
	S-10	25	26.5		80.6																	
	S-11	27.5	29		19.1																	
	S-12	30	31.5		25.7																	
	S-13	32.5	34	CL	20.7					78		45	14	31								
	S-14	35	36.5		19.3																	
	S-15	37.5	39		22.9																	
	S-16	40	41.5		19.2																	
DD 127 01	S-17	42.5	44		21.4																	
KF*12/*01	S-18	44	46.5		23.5																	
	S-19	47.5	49	CL	20.9					91		39	18	21								
	S-20	50	51.5		21.9																	
	S-21	52.5	54		22.1																	
	S-22	55	56.5	СН	17.6			3	11	59	27	51	16	35								
	S-23	57.5	59		17.0																	
	S-24	60	61.5		20.3																	
	S-25	62.5	64		29.9																	
	S-28	70	71.5	CL	25.7			0	7	64	29	49	17	32								
	S-29	72.5	74.5	CH	29.5							56	19	37								
	S-30	74.5	76	CH	23.4			0	3	63	34	52	15	37								
	S-31	77.5	79.5	CH	27.5	124.71						67	19	48					2000	3604		
	S-32	79.5	81		27.7																	
	S-33	82.5	84		27.9																	
	S-34	85	86.5	CH	26.6		2.7	0	0	73	27	61	16	45								
	S-35	87.5	89		25.8																	
	S-36	90	91.5	CH	26.1			0	1	77	22	56	16	40								

	Sample D	ATA						GRAIN SIZE ANALYSIS ²				ATTERBERG LIMITS				COR	ROSION		TRIAXIAL	TESTING Peak		
		De	pth Bottom		Moisture	Moisture		Crouol	Cond	Fine	S ³	Liquid	Plastic	Plasticity		Decistivity	Culfataa	Chloridoo	Consolidtion	Principal Stress	Pinhole Testing	Sodium Absorption
Poring	Samplo	(feet)	(feet)	USCS Symbol ¹	Content (%)	Unit weight	Specific	Graver (%)	Sanu (%)	(75 t0 2 um) (%)	(< 2 um) (%)	Limit (%)	Limit (%)	(%)	nU	(ohm-cm)	Sullates	(%)	Pressure (nsf)	Unref)	Dispersiveness	Ration (SAD)⁵
Boring	S-37	92.5	94	Symbol	26.9	(pci)	Gravity	(70)	(70)	(70)	(70)	(70)	(70)	(70)	рп	(onin-city)	(70)	(70)	(psi)	(p3i)	Calegory	(JAN)
	S-38	95	96.5		24.4																	
	S-39	97.5	99	CH	26.9					87		56	16	40								
	S-40	100	101.5		27.1																	
	S-41	102.5	102.8		22.8																	
	S-42	105	106.5	SC	24.7					42		56	15	41								
	S-44	110	111.5		106.8																	
	S-45	112.5	114	CL	27.6					99		43	15	28								
	S-46	115	116.5		80.7																	
	S-47	117.5	119	СН	24.3			0	0	57	43	112	18	94								
	S-48	120	121.5		25.1																	
	S-50	125	126.5		25.3																	
	S-51	127.5	129		32.0																	
	S-52	130	131.5		26.1																	
RP-127-01	S-53	132.5	134	CL	22.5					100		46	20	26								
11 127 01	S-54	135	136.5		25.2																	
	S-56	140	141.5	ML	29.3					84		NV	NP	NP								
	S-57	142.5	144		28.3																	
	S-58	145	146.5		24.8																	
	S-59	147.5	149	CL	25.0					100		42	20	22								
	S-60	150	151.5		21.7																	
	S-61	152.5	154		26.8																	
	S-63	157.5	159	CL	23.9			0	1	81	18	39	20	19								
	S-64	160	161.5		27.7																	
	S-65	162.5	164		25.8																	
	S-66	165	166.5		26.6																	
	S-67	167.5	168.4		45.9																	
	S-68	170	171.5		28.4																	
	S-69	172.5	174		26.8																	
	S-70	175	176.5		25.2																	

	SAMPLE D	ATA							GRAIN S	IZE ANALYSI	S²	ATT	FERBERG L	IMITS	CORROSION				TRIAXIAL	TESTING Peak		
Boring	Samnla	De Top (feet)	epth Bottom (feet)	USCS Symbol ¹	Moisture Content (%)	Moisture Unit Weigh (ncf)	t Specific	Gravel	Sand	Fin (75 to 2 um) (%)	es ³) (< 2 um) (%)	Liquid Limit	Plastic Limit (%)	Plasticity Limit (%)	nH	Resistivity	Sulfates	Chlorides (%)	Consolidtion Pressure (nsf)	Principal Stress Difference (nsf)	Pinhole Testing Dispersiveness	Sodium Absorption Ration
Doning	Sample S-1	2.5	5	Symbol	16.7	(pci)	Gravity	(70)	(70)	(70)	(70)	(70)	(70)	(70)	рп	(onin-citi)	(70)	(70)	(p3i)	(psi)	Calegory	(JAN)
	S-2	5	6	CL	16.6	118.2464				82		40	17	23								
	S-3	7.5	10		21.2																	
	S-4b	10.8	11		20.5							52*	19*	33*								
	S-5	12.5	15		19.3																	
	S-6	15	17.5		20.6																	
	S-7	17.5	18.5		27.9																	
	S-8	20	22.5		31.9																	
	S-9	22.5	25		23.1																	
	S-10	25	27.5	CL	22.7					98		41*	19*	22*								
	S-11	27.5	28.5		18.4																	
	S-12	30	32.5		24.6																	
	S-13	32.5	35	CL	29.5					94		48	20	28								
	S-14	35	37.5		23.0																	
	S-15	37.5	40		22.7																	
	S-16	40	41		21.7	126.557																
RP-127-02	S-17	42.5	45		21.7																	
	S-18	45	47.5		20.0																	
	S-20	50	52.5	011	21.1								10	<u>^</u>								
	S-21	52.5	55	CH	31.4	110 5100				84		55	19	36								
	S-22	55	50		19.5	110.5138																
	5-23	57.5	00 42 E	CH	20.0					07		42	20	24								
	S 25	40 E	02.0	СП	30.0					91		02	20	34								
	S-20	65	67.5		22.4																	
	S-20	67.5	70		20.5																	
	S-29	72.5	75		26.5																	
	S-30	75	77.5	CH	25.2					100		75	17	58								
	S-31	77.5	78.5	011	30.4					100		,,,	.,	00								
	S-32	80	82.5		24.8																	
	S-33	82.5	85		26.7																	
	S-34	85	87.5		75.9																	
	S-35	87.5	90	СН	24.8			0	4	42	54	94	18	76								
	S-36	90	92.5		67.2																	

	SAMPLE D	ATA							GRAIN SIZE ANALYSIS ²			ATTERBERG LIMITS				COR	ROSION		TRIAXIAL	TESTING Peak		
		D	epth Bottom		Moisture	Moisture		Crowol	Sond	Fine	S ³	Liquid	Plastic	Plasticity		Docictivity	Culfoteo	Chloridee	Consolidtion	Principal Stress	Pinhole Testing	Sodium Absorption
Boring	Samplo	(feet)	(feet)	USCS Symbol ¹	Content (%)	Unit Weight	Specific	Graver		(/5 to 2 um) (%)	(< 2 um) (%)	LIMIT (%)	LIMIT (%)	Limit (%)	۳H	(obm-cm)	Sulfates	Chiorides (%)	Pressure (nsf)	Difference (nsf)	Dispersiveness	Ration (SAD) ⁵
вонну	S-37	92.5	95	Symbol	79.3	(pci)	Gravity	(70)	(70)	(70)	(70)	(70)	(78)	(76)	рн	(onn-cin)	(70)	(76)	(psi)	(psi)	Calegory	(SAR)
	S-38	95	97.5		24.0																	
	S-39	97.5	98.5		26.8																	
	S-40	100	102.5		22.4																	
	S-41	102.5	105	CL	21.1					63		35	17	18								
	S-42	105	107.5		30.6																	
	S-43	107.5	110		31.9																	
	S-44	110	111	СН	29.7	118.6266				93		65	24	41								
	S-45	112.5	115		20.5																	
	S-46	115	117.5		20.3																	
DD 107 00	S-47	117.5	120		19.3																	
KF-127-02	S-48	120	122.5		24.6																	
	S-49	122.5	125	CH/CL	22.3					84		49	17	32								
	S-50	125	126		23.6	125.5054																
	S-52	130	132.5		19.1																	
	S-53	132.5	135	CH/CL	23.0					88		50	16	34								
	S-54	135	137.5		24.8																	
	S-55	137.5	138.5		21.1																	
	S-56	140	142.5		19.9																	
	S-57	142.5	145		19.4																	
	S-58	145	147.5	CH	23.2					98.7		61	21	40								
	S-59	147.5	150		24.6																	
	S-1	2.5	5		25.2																	
	S-3	7.5	10		23.0																	
	S-4	10	12.5	СН	22.7					81		55	18	37								
	S-5	12.5	13.5		18.8																	
	S-6	15	17.5		24.4																	
RP-127-03	S-7	17.5	20		16.2																	
	S-8	20	21		21.9																	
	S-9	22.5	25		19.6																	
	S-10	25	27.5		24.1																	
	S-11	27.5	30		15.1																	
	S-12	30	31	CH	21.8	107.8632				58		50	19	31								
	S-13	32.5	35		26.5																	

	Sample D	ATA						GRAIN SIZE ANALYSIS ²					ATTERBERG LIMITS				ROSION		TRIAXIAL	TESTING Peak		
		Dej	pth		Moisture	Moisture		6l	6 t	Fine	2S ³	Liquid	Plastic	Plasticity		Desisti di	0.16.1	Oblesid	Consolidtion	Principal Stress	Pinhole Testing	Sodium Absorption
Poring	Sampla	(feet)	(foot)	USCS	Content	Unit Weight	Specific	Gravel	Sand	(75 to 2 um) (%)	(< 2 um) (%)	LIMIT	Limit (%)	Limit	ъЦ	(obm.cm)	Sulfates	Chlorides	Pressure	Difference	Dispersiveness	Ration
вонну	S-14	35	37.5	Symbol	27.4	(pci)	Gravity	(70)	(70)	(70)	(70)	(78)	(70)	(70)	рп	(Unin-cin)	(76)	(70)	(psi)	(psi)	Calegory	(SAK)
	S-15	37.5	40		21.1																	
	S-16	40	42.5		24.2																	
	S-17	42.5	45		42.4																	
	S-18	45	46		25.2	125.2816																
	S-19	47.5	50	CH	27.1					96		53	18	35								
	S-20	52.5	55		20.4																	
	S-21	55	57.5		24.4																	
	S-22	57.5	60		22.7																	
	S-23	60	61		20.5																	
	S-24	62.5	65		25.1																	
	S-25	65	67.5	СН	24.5					87		52	18	34								
	S-26	67.5	70		23.0																	
	S-27	70	72.5		20.4																	
	S-28	72.5	75		18.7																	
	S-29	75	77.5		18.4																	
DD 107 00	S-30	77.5	80	CL/SC	21.5			1	48	51		34	14	20								
RP-127-03	S-31	80	82.5		22.0																	
	S-32	82.5	85		20.5																	
	S-33	85	87.5		17.7																	
	S-34	87.5	90		20.7																	
	S-35	90	92.5	SM	19.3					23		22	21	1								
	S-36	92.5	95		19.2																	
	S-37	95	97.5		19.4																	
	S-38	97.5	100		21.0																	
	S-39	100	102.5		19.8																	
	S-40	102.5	105	SC	21.8			0	73	16	11	29	21	8								
	S-41	105	107.5		19.3																	
	S-42	107.5	110		24.8																	
	S-43	110	111.5		20.3																	
	S-44	112.5	115		23.2																	
	S-45	115	116		20.6	127.8128																
	S-46	117.5	120		18.9																	
	S-47	120	122.5		21.0																	

	SAMPLE D	ATA							GRAIN SIZE ANALYSIS ²				ATTERBERG LIMITS				ROSION		TRIAXIAL	TESTING Peak		
		De Top	epth Bottom	11000	Moisture	Moisture	C	Gravel	Sand	Fine (75 to 2 um)	es ³ (< 2 um)	Liquid Limit	Plastic Limit	Plasticity Limit		Resistivity	Sulfates	Chlorides	Consolidtion	Principal Stress Difference	Pinhole Testing	Sodium Absorption
Boring	Sample	(feet)	(feet)	USCS Symbol ¹	(%)	(pcf)	Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	рH	(ohm-cm)	(%)	(%)	(psf)	(psf)	Dispersiveness Category ⁴	Ration (SAR) ⁵
	S-48	122.5	124		20.7	N . 7	onung					、		~ /				()				()
	S-49	125	126.5		16.2																	
	S-50	127.5	130		21.0																	
	S-51	130	132.5	SC	21.9					28		36	19	17								
	S-52	132.5	135		23.5																	
	S-53	135	137.5		26.7																	
	S-54	137.5	140		28.4																	
RP-127-03	S-55	140	142.5	SC	26.2					48		46	15	31								
NI - 127-03	S-56	142.5	145		21.2																	
	S-57	145	147.5		18.9																	
	S-58	147.5	148.4		18.2																	
	S-59	155	156		17.7	129.8616																
	S-60	160	162.5		21.9																	
	S-61	165	166.5		23.3																	
	S-62	170	170.9	СН	30.3					96		99	22	77								
	S-63	175	175.5		16.3																	
	S-1	2.5	5		9.0																	
	S-2b	5.6	5.8	CL	12.1					59		41*	14*	27*								
	S-2c	6	6.3		15.5*							45*	15*	30*								
	S-3	7.5	10	CL	11.1					83		41	15	26								
		10	12.5		10.5								40*	201								
	S-58	12.8	13		11.5					F.2		44"	12-	32"								
	S-5D	15.5	13.5		8.8					53												
	5-0	17.5	17.5	CL	10.2					50		42	10	20								
RP-127-04	5-7	17.5	20	UL	19.9					59		42	13	29								
	5.0	20	22.0	СШ	22.6					100		60	21	20								
	S 102	22.J 25.2	25 /	CIT	23.0					100		62*	10*	J7 ///*								
	S 10b	25.2	20.4		24.3							65	19	44								
	S-100	23.0	20		27.2							05	17	40								
	S-12	30	30		20.4	125 1969																
	S-12	32.5	35	СН	28.8	120.1707		0	1	67	32	114	17	97								
	S-14	35	37.5	011	25.0			v		07	52	114		//								
	S-15	37.5	40		24.6																	
	SAMPLE DATA								GRAIN S	IZE ANALYSIS	2	ATT	ERBERG L	IMITS		COF	ROSION		TRIAXIAL	TESTING Peak		
-----------	-------------	-----------	----------------	-----------------------------	----------	----------	---------------------	--------	---------	----------------------	----------------	-----------------	------------------	------------	-----	-------------	----------	-----------	--------------------------	-----------------------------------	---	----------------------
		De Top	epth Bottom	11000	Moisture	Moisture	0.15	Gravel	Sand	Fine (75 to 2 um)	s³ (< 2 um)	Liquid Limit	Plastic Limit	Plasticity		Resistivity	Sulfates	Chlorides	Consolidtion Pressure	Principal Stress Difference	Pinhole Testing	Sodium Absorption
Boring	Sample	(feet)	(feet)	USCS Symbol ¹	(%)	(pcf)	Specific Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	pН	(ohm-cm)	(%)	(%)	(psf)	(psf)	Dispersiveness Category ^₄	Ration (SAR)⁵
	S-16	40	41	,	26.6	125.7118	. ,								· ·						5 5	. ,
	S-17	42.5	45	CH	27.9					99		125	20	105								
	S-18	45	47.5		25.4																	
	S-19	47.5	50		30.8																	
	S-20	50	52		26.1																	
	S-21	52.5	55		23.2																	
	S-22	55	57.5		23.4																	
	S-23a	57.5	57.7		24.7*							101*	14*	87*								
	S-24	60	62.5	CU	23.4			0	0	50	41	70	17	(2)								
	5-20	65	66	СН	23.7			U	0	29	41	19	17	02								
	S 27	67.5	70	СЦ	22.1					100		90	17	72								
	S-28	70	70	CIT	22.3					100		07	17	12								
	S-29	72.5	75		22.5																	
	S-30	75	77.5		23.5																	
	S-31	77.5	80	СН	22.5			0	13	63	24	71	22	49								
	S-32	80	82.5		21.9																	
	S-33	82.5	85	CH	26.5					94		118	25	93								
	S-34	85	86		25.0																	
DD 107 04	S-35	87.5	90		23.7																	
KF-127-04	S-36	90	92.5		22.5																	
	S-37	92.5	95		23.1																	
	S-38	95	97.5	CH	22.5					100		92	17	75								
	S-39	97.5	98.5		20.5	130.8372																
	S-40	100	102		24.5																	
	S-41	102.5	105		22.3																	
	S-42	105	107.5		22.3																	
	S-43	107.5	110		24.8																	
	S-44	110	112.5	CH	29.8					95		81	20	61								
	S-45	112.5	115.5		22.5																	
	S-40	117 5	115.1		20.4																	
	S-47	117.5	122.5	СЦ	20.0					00		02	21	72								
	S-40	120	122.0	СП	24.4					99		93	21	12								
	S-50	122.3	123.5		20.3																	
	S-51	127.5	130	СН	24.5					54		69	19	50								
	S-52	130	132.5		22.8					5.			.,	50								
	S-53	132.5	133.5		21.6																	
	S-54	135	135.9		43.2																	
	S-55	137.5	140	CH	22.9					94		88	17	71								

:	SAMPLE DATA							GRAIN S		2	ATT	ERBERG L	IMITS		COR	ROSION		TRIAXIAL	TESTING		
		De Top	pth Bottom	USCS	Moisture Content	Moisture Unit Weight _{Specifi} r	Gravel	Sand	Fine (75 to 2 um)	s³ (< 2 um)	Liquid Limit	Plastic Limit	Plasticity Limit		Resistivity	Sulfates	Chlorides	Consolidtion Pressure	Principal Stress Difference	Pinhole Testing	Sodium Absorption Ration
Boring	Sample	(feet)	(feet)	Symbol ¹	(%)	(pcf) Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	рН	(ohm-cm)	(%)	(%)	(psf)	(psf)	Category ⁴	(SAR)⁵
	S-1	2.5	5	CH	17.7				73		53	16	37								
	S-2	5.4	5.7		28.0						55	20	35								
	S-3	7.5	10		29.5																
	S-4	10.5	10.8		18.1						52	18	34								
	S-5	12.5	15		19.8																
	S-6	15	16	SC/CH	23.5				51		53	17	36								
	S-7	17.5	20		25.3																
	S-8	20.9	21.2		26.9						66	18	48								
	S-9	22.5	25		30.6																
	S-10	25	27.5	CH	33.5		0	1	35	64	141	25	116								
	5-11	27.5	30		28.8	100 0000															
	S-12	30	31	011	27.0	129.0382			02		100	10	00								
	S-13	32.5	35	CH	24.0				83		108	18	90								
RP-127-05	S-14	30	37.5		20.2																
	S-10	37.5	40		23.0																
	S-10	40 42 E	41		28.0																
	S 10	42.0	40		20.3																
	S-10	4J 50	47.5 52.5	СH	27.7		0	2	76	22	80	10	61								
	S-20	55	56	CIT	20.2	122 6635	0	2	70	22	00	17	01								
	S-20	60	62.5		27.1	122.0033															
	S-22	65	67.5		23.3																
	S-23	70	72.5		24.8																
	S-24	75	76		26.6																
	S-25	80	82.5	CH	25.3				98		119	22	97								
	S-26	85	85.3		68.3																
	S-27	87.5	87.7																		
	S-28	90	92.5		21.1																
	S-29	92.5	95		22.4																
	S-30	95	96	CH	25.9	121.7271			96		122	24	98								
	S-31	97.5	100	CH	22.3				74.6		77	18	59								
	S-32	100	102.5		27.0																
	S-33	102.5	105		23.3																
	S-34	105	107.5		23.0																
	S-35	107.5	108.5		19.7																
	S-36	110	110.1																		
	S-37	112.5	114		21.7																
	S-38	115	116.5	СН	21.3		0	0	57	43	71	21	50								
RP-127-05	S-39	117.5	118.9		22.9																
NI -12/=0J	S-40	120	121		25.9																
	S-41	125	127.5		27.9																

	SAMPLE DATA					GRAIN S	ize analysis [;]	2	ATT	ERBERG L	IMITS		COF	ROSION		TRIAXIAL	TESTING Peak					
		De Top	epth Bottom	USCS	Moisture Content	Moisture Unit Weight	Specific	Gravel	Sand	Fine (75 to 2 um)	s³ (< 2 um)	Liquid Limit	Plastic Limit	Plasticity Limit		Resistivity	Sulfates	Chlorides	Consolidtion Pressure	Principal Stress Difference	Pinhole Testing Dispersiveness	Sodium Absorption Ration
Boring	Sample	(feet)	(feet)	Symbol ¹	(%)	(pcf)	Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	pН	(ohm-cm)	(%)	(%)	(psf)	(psf)	Category⁴	(SAR)⁵
	S-42	130	132.5		25.0																	
	S-43	135	137.5		23.3																	
	S-44	140	141	CH	30.7					96		120	25	95								
	S-45	145	146		21.8	129.7617																
	S-46	150	151.5		24.5																	
	S-47	155	156.5		23.0																	
	S-48	160	161.4	CH	21.7					100		98	19	79								
	S-49	165	167.5		22.0																	
	S-50	167.5	170																			

	SAMPLE DATA							GRAIN S	Size Analysis	2	ATT	ERBERG L	IMITS		COR	ROSION		TRIAXIAL	TESTING Peak		
		De Top	pth Bottom	USCS	Moisture Content	Moisture Unit Weight Specific	Gravel	Sand	Fine (75 to 2 um)	s³ (< 2 um)	Liquid Limit	Plastic Limit	Plasticity Limit		Resistivity	Sulfates	Chlorides	Consolidtion Pressure	Principal Stress Difference	Pinhole Testing Dispersiveness	Sodium Absorption Ration
Boring	Sample	(feet)	(feet)	Symbol ¹	(%)	(pcf) Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	рН	(ohm-cm)	(%)	(%)	(psf)	(psf)	Category⁴	(SAR)⁵
	S-1	2.5	5	SC	8.6				36		28	17	11								
	S-2	5	7.5		11.1																
	S-3	10.5	10.8	CH	34.1				98		100	26	74								
	S-4	15	16.5	СН	15.1		0	16	84		57	19	38								
	S-5	20	22.5		22.6																
	S-6	25	26		26.3	117.184					100	21	/9								
	<u>S-7</u>	30	32.5	СН	25.6				100		63	17	46								
	S-8	35	37.5		24.9																
	S-9	40	42.5	0	25.6		<u>^</u>	40	(0	10	15	10	07								
	S-10	45	47.5	CL	27.0		0	13	69	18	45	18	27								
	5-11	50	52.5		24.9																
	5-12	55	56	011	23.9		0	2	25	(2	0/	24	(0								
	5-13	60	62.5	СН	37.0		0	3	35	62	86	26	60								
	5-14	65	07.5		25.7																
	5-15	70	71	0	29.3				100		41	25	1/								
	5-10	/5	11	υL	32.2				100		41	25	16								
	5-17	80	82		28.2	120 5 120															
	5-18	85	80 01 F		23.7	130.5439															
	5-19	90	91.5		27.8				F 4				0								
	S-20	95	9/	ML	29.0				54		24	24	0								
	S-21	100	101.4		24.3																
	5-22	110	110.5		22.8																
	5-23	112.5	112.0		20.9 20.5																
	S-24	112.5	115.3		30.5																
RP-127-06	5-20	117 5	117.0		20.9																
	S-20	117.5	121 5		109.0																
	5-27	120	121.5	СЦ	22.0	120 1247			100		101	10	102								
	S 20	122.0	123.3	СП	22.0	130.1207			100		121	19	102								
	S 20	127 5	127.5		21.0																
	S 21	127.5	122.5		25.1																
	5-31	122 E	132.5	СЦ	23.3		0	0	44	2E	70	14	E4								
	S 22	132.0	127.5	СП	20.2		0	9	00	20	70	10	34								
	5-33	130	137.5		20.4																
	S-34	1/10	1/2 5		20.9																
	S-35	1/12 5	142.5		21.7																
	S 27	142.5	145		22.6																
	5-37	140	147.0		32.0																
	S 20	147.0	150		24.7	121 0052															
	S-10	152.5	155		20.0	131.7732															
	S 40	102.0	153	СЦ	21.0				00		90	10	41								
	3-41	100	107.0	СП	ZZ.0				70		00	17	01								

	SAMPLE DATA					GRAIN S	ize analysis [;]		ATT	ERBERG LI	IMITS		COR	ROSION		TRIAXIAL ⁻	TESTING Peak					
		D Top	epth Bottom	USCS	Moisture Content	Moisture Unit Weight	Specific	Gravel	Sand	Fine: (75 to 2 um)	s³ (< 2 um)	Liquid Limit	Plastic Limit	Plasticity Limit		Resistivity	Sulfates	Chlorides	Consolidtion Pressure	Principal Stress Difference	Pinhole Testing Dispersiveness	Sodium Absorption Ration
Boring	Sample	(feet)	(feet)	Symbol ¹	(%)	(pcf)	Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	pН	(ohm-cm)	(%)	(%)	(psf)	(psf)	Category ^₄	(SAR)⁵
	S-42	160	162.5		20.9																	
	S-43	165	165.8		71.7																	
	S-44	170	170.1		96.0																	
	S-45	175	177		23.5																	
	S-46	180	181	CH	19.5	133.5291				100		72	19	53								
	S-47	185	187.5		22.6																	
	S-48	190	192.5	CH/SC	22.8					52		72	18	54								
	S-49	195	195.5		86.1																	
	S-50	200	202.5		20.8																	

Table D-1 - Summary of Previous Laboratory Test Results by Boring

:	SAMPLE DATA								GRAIN S	ize analysis [;]	2	ATT	ERBERG L	IMITS		COR	ROSION		TRIAXIAL	resting Peak		
		De	pth Bottom		Moisture	Moisture		Crowol	Sand	Fine	S ³	Liquid	Plastic	Plasticity		Docietivity	Sulfator	Chloridoc	Consolidtion	Principal Stress	Pinhole Testing	Sodium Absorption
Borina	Sample	(feet)	(feet)	USCS Symbol ¹	Content (%)	(pcf) (Specific Gravity	(%)	Sanu (%)	(75 t0 2 uni) (%)	(< 2 uiii) (%)	(%)	(%)	(%)	вH	(ohm-cm)	Sunates (%)	(%)	(psf)	(psf)	Dispersiveness Category ^₄	Ration (SAR)⁵
	S-1	5	6.5		21.5	N /		. ,					. ,			. ,			ч <i>г</i>	N 7	5,5	
	S-2	10	11.5	CH	26.4					86		86	23	63								
	S-3	15	16.5		15.6																	
	S-4	20	21		27.0	116.7907																
	S-5	25	26.5	CL	26.1					78		43	18	25								
	S-6	30	31.5		24.8										8.1	170	1.2	0.02				
	S-7	35	36.5	SC	6.9					33		89	16	73								
	S-8	40	41.5		40.4																	
	S-9	45	46	CH	28.2	122.2855				59	41	90	20	70								
	S-10	50	51.5		33.0																	
	S-11	55	56.5	SM	34.5			0	53	43	4	NV	NP	NP								
	S-12	60	61.5		29.4																	
	S-13	65	66.5		71.8																	
	S-14	70	71.5	CH	28.0					99		101	25	76								
RP-127-07	S-15	75	76		28.5	123.7911																
	S-16	77.5	79		30.1																	
	S-17	80	81.5		32.7																	
	S-18	82.5	84	CH	25.2					99		118	20	98								
	S-19	85	86.5		26.8																	
	S-20	87.5	88.5		23.4	128.0561																
	S-21	90	91.5	CH	26.5					99		101	16	85								
	S-22	95	96.5		25.5																	
	S-23	100	100.2		87.0																	
	S-24	105	106.5		22.5																	
	S-25	110	111.5		22.7																	
	S-26	115	116	CH	23.2	132.3276				100		108	19	89								
	S-27	120	121.5		24.7																	
	S-28	125	126.5		22.9																	
	S-29	130	131.5	CH	23.9					100		81	23	58								

Notes:

1 Refer to Figure A-1 for definitions.

2 Gravel defined as particles larger than the No. 4 sieve size, sand as particles between the No. 4 and No. 200 sieve sizes, and fines as particles passing the No. 200 sieve.

3 Silt particles are defined as fines (passing the #200 sieve) larger than 2mm; clays are defined as particles smaller than 2mm. USCS designation is based on Atterberg limit testing.

4 Refer to Section B.3.2 for definitions.

5 Refer to Section B.3.3 for definitions.

* Sample tested by Advanced Terra Testing

NP = Non Plastic; NV = No Value; ohm-cm = ohm centimeters; pcf = pounds per cubic foot; psf = pounds per square foot

Total Depth: 176.5 ft. Latitude: ~ 47.60799° Top Elevation: ~ 2223 ft. Longitude: ~ 103.25869° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Drill _ Drill _ Drill _ Othe	ing M ing C Rig E er Co	ethod: ompany Equipmo mments	y: ent: s:	HS. Inte Die	A/Mud erstate edrich L	<u>I Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: D-50 Track Rig Hammer Typ	8 in. AWJ e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 020	ANCE (blows/foot) <u>lbs / inches</u> 40 lbs / 30 inches 40 60
Stiff to very stiff, yellow mottled brown, <i>Fat</i> <i>Clay with Sand (CH)</i> to <i>Fat Clay (CH)</i> ; moist; little to some bedrock debris. Fill	19.0		$\begin{array}{c} 3-1 \\ 3-2 \\ 3-2 \\ 3-3 \\ 3-3 \\ 3-4 \\ 3-5 \\ 5-5 \\ 3-7 \\$			5 10 15		78 78
Very stiff to hard, brown to gray and yellow-brown, <i>Lean Clay (CL)</i> to <i>Lean Clay with Sand (CL)</i> ; moist; few to little bedrock debris; trace to few silt and calcareous debris. Fill			→ X → X + X + X + X + X + X + X + X + X			20 25 30 35 40 45		88 ₩Ċ=81 78
CONTINUED NEXT SHEET		\otimes					0 20 40	60 80 100
	ter and F er -Cement ter and S	^D iezon t Grout SOND	neter ⊻G : EX	Ground	d Wat	ter Leve	el in VWP ◇ % Fines (<0.0	A Recovery (%) 175mm) + tent + (use scale at top) Liquid Limit + bass Addendum
<u>NUTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions.	abbrevia	ations	and		Bi	Proje Ilings	ect No. 9-085(085)075, s, McKenzie, and Stark	PCN 20046 Counties, ND
 The stratification lines represent the approximate boundaries bet transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	tween so underst	oil type anding	s, and th g of the	ie –		LO	g of Boring Ri	P-127-01
 Groundwater level, if indicated above, is for the date specified ar USCS designation is based on visual-manual classification and s 	nd may v selected	vary. lab tes	sting.		S	epter	mber 2017 23-	1-01453-230
 Hole locations based on approximate measurements from existin professional survey. 	ng site fe	atures	s or	ľ	S Ge		NON & WILSON, INC.	FIG. D-1 Sheet 1 of 4

Total Depth: 176.5 ft. Latitude: ~ 47.60799° Top Elevation: ~ 2223 ft. Longitude: ~ 103.25869° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Drilli _ Drilli _ Drill _ Othe	ing M ing C Rig er Co	lethod: compar Equipm	ny: nent: ts:	HSA Inter Died	/Muo state rich l	<u>I Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: <u>D-50 Track Rig</u> Hammer Ty	8 in. AWJ pe: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESIS [®] ▲ Hammer Wt. & Drop: 0 20	TANCE (blows/foot) <u>lbs / inches</u> 140 lbs / 30 inches 40 60
Fill (continued) Very stiff to hard, gray to red-brown, <i>Fat Clay</i> (<i>CH</i>); moist; few sand; few to little red sandstone fragments. Fill	- 54.5		26 5.25 5.24 5.23 5.22 5.21 5.20			55 60 65		40 00 86
Very stiff, gray to red-brown, <i>Lean Clay (CL)</i> to <i>Fat Clay (CH)</i> ; moist to wet; disturbed; trace to few sand; few to little bedrock debris. Landslide Debris DISPLACED CLAYSTONE: very low strength,	- 70.0		S-31 S-30 S-29 S-28 S-27 S () ()		3////////////////////////////////////	70 75		93 93 97
yellow-brown with iron oxide staining, slightly weathered (Sentinel Butte Formation). [Very stiff, <i>Fat Clay (CH)</i> ; moist to wet.]	89.5		s S-35 S-34 S-33 S-32	t Encountered During Drilling		80 85 90		100 LL=6
 yellow-brown with iron oxide staining; slightly weathered; trace carbonaceous fragments (Sentinel Butte Formation). [Very stiff, <i>Fat Clay (CH)</i>; moist; trace to few sand.] Carbonaceous lenses at 40 degrees from 100 to 102 feet.continued NEXT SHEET 			S-39 S-38 S-37 S-36	Groundwater No		95		87 60 80 100
★ Sample Not Recovered Inclinome ↓ Standard Penetration Test Piezomet ↓ Modified California Sampler Bentonite ★ 3" O.D. Thin-Walled Tube Slough ↓ Inclinome Inclinome NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. Codes, codes, codes, codes	ter and F er -Cement ter and S abbrevia	Piezor t Grou SONE ations	meter ⊈ ut DEX and	Ground	d Wate US-8 F Bill	r Leve 5 - I Proje	20 40 Image: RQD (%) Image: RQD (%) Image: RQD (%) Image: RQD (%)	Z Recovery (%) .075mm) ← htent ←(use scale at top) ↓ Liquid Limit ← /pass Addendum , PCN 20046 < Counties, ND
 The stratification lines represent the approximate boundaries be transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified and 	tween so ⁻ underst nd may v	oil type tandin vary.	es, and t g of the	he	0.	LO		P-127-01
 USCS designation is based on visual-manual classification and s Hole locations based on approximate measurements from existin professional survey. 	selected ng site fe	lab te eature	sting. s or	-	Se SH Geot	ANI echnic	NON & WILSON, INC. rai and Environmental Consultants	FIG. D-1 Sheet 2 of 4

Total Depth: 176.5 ft. Latitude: ~ 47.60799° Top Elevation: ~ 2223 ft. Longitude: ~ 103.25869° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	Drilli Drilli Drilli Othe	ing M ing C Rig I er Co	lethod: compan Equipm omment	y: ent: s:	HS Int Die	SA/Mud erstate edrich E	<u>Rotary</u> Hole Diam <u>Drilling Servic</u> e Rod Type. D-50 Track Rig Hammer T	:: <u>8 in.</u> AWJ ype: <u>Automatic</u>	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESIS ▲ Hammer Wt. & Drop: 0 20	STANCE (blows/foot) Ibs / inches 140 lbs / 30 inches 40 60	
DISPLACED CLAYSTONE (continued)			S-40						
SANDSTONE: very low strength, gray with occasional iron oxide staining; fresh to slightly weathered (Sentinel Butte Formation).	102.0		S-42 S-41			105		50/4*2	
[Medium dense to very dense, <i>Clayey Sand</i> (SC); moist.]			44 *			110			•
COAL: very low strength, black (Sentinel Butte Formation). - 0.9-foot thick claystone lense at 113.6 feet.	111.0		te s-45 s-			115			999 999
CLAYSTONE: very low strength, gray, fresh (Sentinel Butte Formation).	117.0		8 S-47 S-4			120		WC=81	100 LL=112
[Hard, <i>Fat Clay (CH)</i> ;moist.]			S-49 S-48			105			
- Dark brown from 127.0 to 128.2 feet.	128.2		S-51 S-50			125	•		
oxide staining; fresh; trace carbonaceous fragments (Sentinel Butte Formation).			-53 S-52			130	•		100
[Hard, Lean Clay (CL); moist.]	125.0		57 ⊥			135			
SILTSTONE: very low strength, gray with iron oxide staining; slightly weathered (Sentinel Butte Formation).	135.0		e s-55 s-			140		.50/5*2	84
[Hard, Silt with Sand (ML); moist.]			S-57 S-5						
CLAYSTONE: very low strength, gray, fresh (Sentinel Butte Formation).	146.0		S-59 S-58			145	• • • • • • • • • • • • • • • • • • •		> ¹⁰⁰
	ter and F er -Cement	Piezor t Grou	neter ⊻⊂ t	Ground	d Wa	iter Leve	0 20 40	60 80 100 ☑ Recovery (%) 0.075mm) ← ontent ←(use scale at top) ↓ Liquid Limit ←	
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions	ter and s abbrevia	SOND	EX and	l	JS- B	-85 - I- Proje illinas	-94 to Watford City E ot No. 9-085(085)07 McKenzie, and Sta	Bypass Addendum 5, PCN 20046 rk Counties, ND	
 The stratification lines represent the approximate boundaries bet transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	ween so underst	oil type tandin	es, and th g of the	ne		LO	G OF BORING I	RP-127-01	
4. Groundwater level, if indicated above, is for the date specified ar		/ary.	etina		S	epten	nber 2017 2	3-1-01453-230	
 6. Hole locations based on approximate measurements from existin professional survey. 	ng site fe	eature	s or		S	HANN eotechnica	NON & WILSON, INC al and Environmental Consultants	FIG. D-1 Sheet 3 of 4	

Total Depth: 176.5 ft. Latitude: ~ 47.60799° Top Elevation: ~ 2223 ft. Longitude: ~ -103.25869° Vert. Datum: Station: ~ Horiz. Datum: Offset:	Drill Drill Drill Othe	ing M ing C Rig er Cc	lethod: Company Equipme omments	<u>H</u> : <u>Ir</u> ent: :	ISA/Mud hterstate hiedrich L	I <u>Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: D-50 Track Rig Hammer Ty	8 in. AWJ pe: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: _ 0 20	FANCE (blows/foot) lbs / inches 140 lbs / 30 inches 40 60
[Hard, <i>Lean Clay (CL)</i> ;moist; trace sand.]			S-63 S-62 S-61 S-60		155		9
CLAYSTONE: very low strength, gray with iron oxide staining; slightly weathered to fresh (Sentinel Butte Formation).	159.5		S-65 S-64		160	•	78
[Hard, <i>Fat Clay (CH)</i> ; moist to wet; trace sand.] - Dark brown from 166.5 to 169.0 feet.	169.0		S-67 S-66		165		•
COAL: very low strength, black (Sentinel Butte Formation). CLAYSTONE: very low strength, gray; fresh; trace to few carbonaceous lenses and	170.3		S-69 S-69 S-68		170	•	944
carbonaceous fragments (Sentinel Butte Formation).	176.5		S-70		1/5	•	76
BOTTOM OF BORING COMPLETED ON 12/13/14					180		
					185		
					190		
					195		
	er and F er Cement	Piezor t Grou	neter ⊥¥ G ıt	ound W	/ater Leve	0 20 40	60 80 100 2 Recovery (%) 075mm) ← ntent ←(use scale at top) ↓ Liquid Limit ←
Inclinomet <u>NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions. </u>	ter and stands	SONE	DEX and	US	S-85 - I Proje Billings	-94 to Watford City By ect No. 9-085(085)075 s, McKenzie, and Stark	rpass Addendum , PCN 20046 c Counties, ND
 The stratification lines represent the approximate boundaries between transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	ween so underst	oil type tandin	es, and the		LO	g of Boring R	P-127-01
4. Groundwater level, if indicated above, is for the date specified an5. USCS designation is based on visual-manual classification and se	id may v elected	vary. Iab te	sting.		Septer	mber 2017 23	-1-01453-230
 Hole locations based on approximate measurements from existing professional survey. 	ig site fe	eature	s or		SHANI Geotechnic	NON & WILSON, INC. al and Environmental Consultants	FIG. D-1 Sheet 4 of 4

Total Depth: <u>140 ft.</u> Latitude: <u>~ 47.60797°</u> Top Elevation: ~ 2223 ft. Longitude: ~ -103.25867°	Drilli Drilli	ng M ng C	lethod: company:	_HSA/Mud	d Rotary Drilling Servic	Hole Diam.: e Rod Type.:	<u> </u>
Vert. Datum: Station:	Drill	Rig E	Equipmer	t: Diedrich	D-50 Track Rig	Hammer Type	e: <u>Automatic</u>
Horiz. Datum: Offset:~	Othe	er Co	mments:				
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water Depth, ft.	0	20	40 60
- Boring offsett approximately 8 feet south of							
boring RP-127-01. See Figure A-26 of the							
descriptions							
				°			
					· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · ·	· · · · · · · · · · ·	
				20	· · · · · · · · · · ·	· · · · · · · · · · ·	
				25			
				30			
				35			
				40			
				45			
CONTINUED NEXT SHEET							
LEGEND					0	20	40 60
* Sample Not Recovered Inclinometer	er and F	Piezon	neter				
	r	0					
Bentonite-	Cement	Grou	τ				
N=N Inclinomet	er and S	SOND	EX	US-85 -	I-94 to Watt	ford City Byr	ass Addendum
<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a	abbrevia	tions	and	Proje	ect No. 9-08	5(085)075, and Stark	PCN 20046
2. The stratification lines represent the approximate boundaries between transition may be gradual	ween so	il type	es, and the				
 The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	understa	anding	g of the		g of bo		-127-01A
4. Groundwater level, if indicated above, is for the date specified and	d may v	ary.		Sento	mhor 2017	22	1-01453 230
5. USCS designation is based on visual-manual classification and se	elected I	ab tes	sting.	Septer		23-	1-01403-230
 Hole locations based on approximate measurements from existing professional survey. 	g site fe	atures	s or	SHAN Geotechnie	NON & WIL	SON, INC.	FIG. D-2

Total Depth: 140 ft. Latitude: ~ 47.60797° Top Elevation: ~ 2223 ft. Longitude: ~ 103.25867° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	Drilli Drilli Drill Othe	ng N ng C Rig I er Co	lethod: compar Equipn ommen	: ny: nent its:	<u>HS</u> Inte	A/Mud erstate drich L	Rotary Drilling Service D-50 Track Rig	Hole Diam.: eRod Type.: Hammer Type	8 in. AWJ ≅ Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples		Water	Depth, ft.	0	20	40 60
See Figure A-26 (continued)						55			
						60			
				d During Drilling		65			
				Not Encountered		70			
				Groundwater		75			
						80			
						85			
						90			
						95			
CONTINUED NEXT SHEET									
* Sample Not Recovered Sample Not Recovered Single Souther Single Inclinometr Single Inclinometr NOTES	er and P r Cement er and S	Piezon Grou	neter t ÆX		US-	85 - I	0 -94 to Wath	20 ord City Byp	40 60
 Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions. The stratification lines represent the approximate boundaries betw 	abbrevia ween so	itions iil type	and es, and t	the	Bi	Proje Ilings	ct No. 9-08 , McKenzie	5(085)075, , and Stark	PCN 20046 Counties, ND
 transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. Groundwater level if indicated above is for the data appendix on the subsurface materials. 	understa	andin	g of the			LOC	g of Bo	RING RP	-127-01A
 Groundwater level, in indicated above, is for the date specified an USCS designation is based on visual-manual classification and se 	elected I	ary. lab te:	sting.		S	epter	mber 2017	23-	1-01453-230
Hole locations based on approximate measurements from existing professional survey.	g site fe	ature	s or		S Ge		NON & WILS	SON, INC. al Consultants	FIG. D-2

Total Depth: Top Elevation: ~	<u>140 ft.</u> Latitu - 2223 ft. Lond	ude: <u>~ 47.60797°</u> iitude: ~ -103.25867°	_ Drilli Drilli	ng M ng Co	ethod: ompany	Hs :Int	SA/Mud terstate	Rotary Drilling Servic	Hole Diam.: e Rod Type.:	<u> </u>
Vert. Datum:	Stati	on: ~	_ Drill	Rig E	Equipme	nt: <u>Di</u>	edrich L	0-50 Track Rig	Hammer Typ	e: <u>Automatic</u>
	0136	<u> </u>				·				
Refer to the report text materials and drilling me represent the approxin the	SOIL DESCRIPT for a proper understa ethods. The stratifica nate boundaries betw transition may be gra	TION anding of the subsurface tion lines indicated below een material types, and dual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	0	20	40 60
See Figure A-26	6 (continued)							• • • • • • • • • • •		
							105			
							110			
							115		· · · · · · · · · ·	
							115	· · · · · · · · · · · ·		
							120			
							125		: : : : : : : : : : : : : : : : : : :	
							130			
							405			
							135			
BO	TTOM OF BOR	ING	140.0				140			
COMP	LETED ON 04/2	24/2017								
							145		· · · · · · · · · · · · · · · · · · ·	
5/17										
0/1 9/1										
U Se V + Comple Not D-	LE		tor and F		otor			U	20	40 60
		Piezomet	er	162011	letei					
23-1-0		Bentonite	-Cement	Grout	t	_				
LONG		NOTES	eter and S	SOND	EX	US	-85 - I	-94 to Watt	ord City By	Dass Addendum
 Sector 1. Refer to Figures A definitions. 	-1 and A-2 for explan	ation of symbols, codes,	abbrevia	tions a	and	В	Billings	, McKenzie	e, and Stark	Counties, ND
2. The stratification li transition may be	nes represent the ap gradual.	proximate boundaries be	tween so	il type	s, and the					
3. The discussion in nature of the subs	the text of this report urface materials.	is necessary for a proper	r understa	anding	g of the		LOC	G OF BO	RING RP	-127-01A
4. Groundwater level	, if indicated above, is	s for the date specified a	nd may v	ary. ab tee	stina	5	Septer	nber 2017	23-	1-01453-230
6. Hole locations bas professional surve	ed on approximate m	easurements from existing	ng site fe	atures	s or	G	SHAN eotechnic	NON & WIL	SON, INC. tal Consultants	FIG. D-2 Sheet 3 of 3

ſ	Total Depth: 150 ft. Latitude: 47.60485° Top Elevation: 2154.0 ft. Longitude: -103.2575° Vert. Datum: Station:	Drill Drill Drill Othe	ing Method: ing Company: Rig Equipmer er Comments:	HSA/Mud Interstate t: <u>CME 55</u>	<u>Rotary</u> Hole Diam. <u>Drilling Servic</u> e Rod Type.: <u>Track Rig</u> Hammer Ty	: <u>8 in.</u> <u>AWJ</u> vpe: <u>Automatic</u>
,	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface naterials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol Samples	Ground Water Depth, ft.	PENETRATION RESIS Hammer Wt. & Drop:	TANCE (blows/foot) 140 lbs / 30 inches 60
	Stiff to hard, brown, dark brown, gray, and green-gray, <i>Lean Clay (CL)</i> to <i>Fat Clay (CH);</i> moist; thin to medium spaced silt and sand interbed; trace carbonaceous fragments; trace sand. Fill		5-1 5-2	5		682
			S-3 S-4 S-5 S-5 S-6	10 15		
	- Trace gravel at 17.5 feet.		S-7	20		
	- Red gravel layer at 25 feet.		5-12 S-11S-10	25 30		98
	- Little carbonaceous fragments from 32.5 to 35 feet.		-16S-15 S-14 S-13 S	35 40		94
2/16	- Sand and trace gravel from 42.5 to 47.5 feet.		\$-20 \$-19 \$-18 \$-17 \$	45 50		
J 10/1:	CONTINUED NEXT SHEET		S-21			[/] − − − − − − − − − − − − − − − − − − −
23-1-01453 US-85.GP	LEGEND ★ Sample Not Recovered ↓ Standard Penetration Test Modified California Sampler \$ 3" O.D. Thin-Walled Tube				0 20 40 ⊠ RQD (%) ◇ % Fines (<0 ● % Water Co Plastic Limit ↓	60 80 100
N_LAT&LONG 2	<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions.	bbrevia	ations and	US Proje Billings	-85 - I-94 to Watford ect No. 9-085(085)075 s, McKenzie, and Star	City Bypass 5, PCN 20046 k Counties, ND
E_POCKETPE	 The stratification lines represent the approximate boundaries betw transition may be gradual. The discussion in the text of this report is necessary for a proper or nature of the subsurface materials. Groundwater level if indicated above is far the data appricated and appression. 	veen so underst	bil types, and the tanding of the	LO	G OF BORING F	RP-127-02
S LOG	 Groundwater level, if indicated above, is for the date specified and USCS designation is based on visual-manual classification and se 	elected	vary. lab testing.	Octobe	er 2016 23	3-1-01453-230
MASTEF	 Hole locations based on approximate measurements from existing professional survey. 	g site fe	eatures or	SHAN Geotechnic	NON & WILSON, INC.	FIG. D-3 Sheet 1 of 3

REV 3

Total Depth: 150 ft. Latitude: 47.60485° Top Elevation: 2154.0 ft. Longitude: -103.2575° Vert. Datum: Station:	Drilli Drilli Drill	ing M ing C Rig I er Co	lethod: company: Equipment: omments:	HSA/Muc Interstate CME 55	<u>d Rotary</u> Hole Diam.: <u>e Drilling Servic</u> e Rod Type.: <u>Track Rig</u> Hammer Typ	8 in. <u>AWJ</u> e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Water Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop:	ANCE (blows/foot)
Fill (continued)		\boxtimes	N-22		Ĩ.	
			25 S-24 S-23	60		97 LL=62
DISPLACED CLAYSTONE: very low strength	65.0	\bigotimes	۵. ۳	65		
brown to gray; thinly bedded to thickly laminated; highly to moderately weathered (Landslide Debris/Sentinel Butte Formation).			S-28 S-27 S-2 * During Drilling	70		
Very stiff to hard, brown to gray, Fat Clay (CH);			-29			
moist.			-30 S	75		100
- Iron stained joints dipping approximately 90 degrees.			-32 S-31 S	80		LL=75
 Slickenside dipping approximately 60 degrees. Bedding dipping approximately 90 degrees 			34 S-33 S	85		
from 67.5 to 70 feet. - Coal from 84.8 to 85.3 feet.			- v			
- Coal from 89.5 to 91.5 feet.			- S-36 S-31	90		764 90 L=94 WC=67
DISPLACED CLAYSTONE: very low strength, gray to brown; thin bedded to thickly laminated; highly weathered: trace to few carbonaceous	95.0		S-39 S-38	95		₩C=79
fragments (Landslide Debris/Sentinel Butte Formation).			1 S-40	100	*	63
[Stiff to very stiff, <i>Fat Clay (CH);</i> moist.] - Sandy lean clay from 102 to 105 feet.			3 S-42 S-4	105		
CONTINUED NEXT SHEET			N 4			LL=65
LEGEND ★ Sample Not Recovered ↓ Standard Penetration Test ↓ Modified California Sampler ⑤ 3" O.D. Thin-Walled Tube					0 20 40	60 80 100 ² Recovery (%) D75mm) ← tent ←(<i>use scale at top</i>) ⊢ Liquid Limit ←
NOTES				US	S-85 - I-94 to Watford C	ity Bypass
NOTES Addingutes A-1 and A-2 for explanation of symbols, codes, a definitions	abbrevia	itions	and	Proje Billinge	ect No. 9-085(085)075, s. McKenzie, and Stark	PCN 20046 Counties ND
 The stratification lines represent the approximate boundaries bet 	es, and the					
 The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	underst	g of the	LO	g of Boring R	P-127-02	
 Groundwater level, if indicated above, is for the date specified ar USCS designation is based on visual-manual classification and s 	id may v elected	ary. lab te	sting.	Octobe	er 2016 23	-1-01453-230
Hole locations based on approximate measurements from existin professional survey.	ig site fe	ature	s or	SHAN Geotechnic	NON & WILSON, INC. cal and Environmental Consultants	FIG. D-3 Sheet 2 of 3

Total Depth: 150 ft. Latitude: 47.60485° Top Elevation: 2154.0 ft. Longitude: -103.2575° Vert. Datum: Station:	Drill Drill Drill Othe	ing N ing C Rig I er Co	lethod: ompar Equipn mmen	: <u> </u>	ISA/Mud nterstate CME 55 T	Rotary Hole Diam.: <u>Drilling Servic</u> e Rod Type.: <u>Frack Rig</u> Hammer Typ	<u>8 in.</u> <u>AWJ</u> e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST A Hammer Wt. & Drop:	ANCE (blows/foot)
DISPLACED CLAYSTONE (continued)			4				
DISPLACED CLAYSTONE: very low strength, gray to brown to greenish gray; thin bedded to thickly laminated; moderately to highly weathered; trace to little carbonaceous fragments (Landslide Debris/Sentinel Butte	112.0		47 S-46 S-45 \$		115		
Formation).			م م		120		
[Very stiff to hard, <i>Fat Clay (CH)</i> to Lean Clay (CL); <i>moist.]</i>			S-50 S-49 S-4		125		8 4
- Bedding dipping approximately 50 to 70 degrees from 130 to 137.5 feet.			53 S-52 S-51	×	130		A88
			50 ∽		135		
- Highly weathered two-inch-thick coal layer.			3-56 S-55 S-5		140	•	
DISPLACED CLAYSTONE: very low strength, brown to gray; thickly laminated to thin bedded, bedding tilted at 30 to 60 degrees; highly to moderately weathered (Landslide	142.5) S-58 S-57 S		145	•	99 L=
Debris/Sentinel Butte Formation).	150.0		S-56		150		
[Hard, <i>Fat Clay (CH);</i> moist.] BOTTOM OF BORING COMPLETED ON 7/21/2016					155		
					160		
LEGEND * Sample Not Recovered Standard Penetration Test Modified California Sampler 3" O.D. Thin-Walled Tube	<u> </u>		<u> </u>			0 20 40 ⊠ RQD (%) ℤ ◇ % Fines (<0.0 ● % Water Con Plastic Limit	60 80 100 8 Recovery (%) 175mm) - tent -(use scale at top) Liquid Limit -
					US	-85 - I-94 to Watford C	ity Bypass
<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions.	abbrevia	ations	and	1	Proje Billings	ct No. 9-085(085)075, , McKenzie, and Stark	PCN 20046 Counties, ND
 The stratification lines represent the approximate boundaries between soil type transition may be gradual. The discussion in the text of this report is necessary for a proper understandir nature of the subsurface materials. 				the	LO	g of Boring R	P-127-02
 Groundwater level, if indicated above, is for the date specified an 5 LISCS designation is based on visual-manual destification and s 	nd may w	/ary.	sting		Octobe	er 2016 23	-1-01453-230
 6. Hole locations based on approximate measurements from existin professional survey. 	ig site fe	eature	s or		SHANN Geotechnica	NON & WILSON, INC. al and Environmental Consultants	FIG. D-3 Sheet 3 of 3

	Total Depth: 175.5 ft. Latitude: 47.60457° Top Elevation: 2102.0 ft. Longitude: -103.25806° Vert. Datum: Station:	Dril Dril Dril Oth	ling M ling Co I Rig E her Cor	ethod: ompany: quipmer mments:	<u>HSA</u> <u>Inter</u> nt: <u>CM</u>	/Mud state 55 1	Rotary Hole Diam.: <u>Drilling Servic</u> e Rod Type.: <u>Frack Rig</u> Hammer Typ	<u>8 in.</u> <u>AWJ</u> e: <u>Automatic</u>
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 0	ANCE (blows/foot)
	Stiff to hard, gray to brown, <i>Fat Clay (CH)</i> ; moist; few to little carbonaceous fragments; few bedrock fragments. Fill			3-1		5 10 15 20 25 30		-+0 00 ∞ ⁸¹
10/12/16	 Medium stiff to very stiff, brown, <i>Lean Clay</i> (<i>CL</i>) to <i>Fat Clay</i> (<i>CH</i>); moist; trace to few carbonaceous fragments. Landslide Debris Little carbonaceous fragments from 32 to 35 feet. Iron stains from 37 to 40 feet. Little carbonaceous fragments from 42 to 45 feet. 	32.0		-20 S-19 S-18S-17 S-16 S-15 S-14 S-13 S		35 40 45 50		96
	CONTINUED NEXT SHEET <u>LEGEND</u> * Sample Not Recovered Standard Penetration Test 3" O.D. Thin-Walled Tube Medical Colifornia Samplar			<u>s</u>			0 20 40 ⊠ RQD (%) ∅ ◇ % Fines (<0.0 ● % Water Con Plastic Limit	60 80 100 2 Recovery (%) 075mm) • tent •-(use scale at top) 1 Liquid Limit •
CKETPEN_LAT&LONG 23	 NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions. 2. The stratification lines represent the approximate boundaries between transition may be gradual. 	abbrevi ween s	iations a coil type:	and s, and the	F Bill	US Proje lings	-85 - I-94 to Watford C ect No. 9-085(085)075, , McKenzie, and Stark	ity Bypass PCN 20046 Counties, ND
G_E_POC	 I he discussion in the text of this report is necessary for a proper nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified and 	unders d may	standing vary.	ot the				P-12/-03
TER_LOC	 USCS designation is based on visual-manual classification and se Hole locations based on approximate measurements from existing professional aurory. 	elected g site f	l lab tes eatures	ting. or	00 S⊦	tobe	er 2016 23	-1-01453-230 FIG. D-4
MAS	professional survey.				Geo	technic	al and Environmental Consultants	Sheet 1 of 4

Total Depth: 175.5 ft. Latitude: 47.60457° Top Elevation: 2102.0 ft. Longitude: -103.25806° Vert. Datum: Station:	Dril Dril Dril Oth	lling M lling C Il Rig I ner Co	lethod: company Equipmo omments	_ <u></u> /: <u></u> ent: s:	SA/Mud terstate ME 55 1	<u>Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: T <u>rack Rig</u> Hammer Typ	8 in. AWJ e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 0 20	ANCE (blows/foot)
Landslide Debris (continued)			-21				
- Iron stains from 55 to 65 feet.			24 S-23S-22 S		60		
Very stiff to bend brown. Est Clay (CUI), mainty	65.0				65		
few sand; iron stains; thin spaced SC to SM layers; bedding dipping approximately 30 to 45 degrees. Landslide Debris			S-27 S-26 S-25		70		
- Few gravel from 67 to 70 feet. Dense to very dense, brown to gray to	- 77.0		0 S-29 S-28		75		
blue-gray, <i>Clayey Sand (SC)</i> to <i>Silty Sand (SM)</i> ; moist; bedding tilted from 35 degrees to near vertical; trace to few carbonaceous fragments; thin to medium spaced clayey sand			5-32 S-31 S-3	uring Drilling	80		
zones. Landslide Debris			S-34 S-33	ot Encountered L	85 90	•	87
- Trace carbonaceous fragments from 92 to 100 feet.			S-37 S-36 S-35	Groundwater N	95		
			40 S-39 S-38		100	•	
- Little to some carbonaceous fragments from			S 42 S 41 S-		105	•	
LEGEND Sample Not Recovered Standard Penetration Test S' S' Modified California Sampler			1			0 20 40 ⊠ RQD (%) ∅ ◇ % Fines (<0.0 ● % Water Com Plastic Limit	60 80 100 ⓐ Recovery (%) 075mm) ← tent ←(use scale at top) ┨ Liquid Limit ←
					US	-85 - I-94 to Watford C	ity Bypass
 <u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 	, abbrevi	iations	and	E	Proje Billings	ct No. 9-085(085)075, , McKenzie, and Stark	PCN 20046 Counties, ND
 2. The stratification lines represent the approximate boundaries be transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	etween s er unders	soil type standin	es, and th g of the	e	LO	g of Boring R	P-127-03
4. Groundwater level, if indicated above, is for the date specified a	and may	vary.	atin -		Octobe	er 2016 23	-1-01453-230
5. USCS designation is based on visual-manual classification and 6. Hole locations based on approximate measurements from existi professional survey.	selected	feature	sung. s or			ION & WILSON, INC. al and Environmental Consultants	FIG. D-4 Sheet 2 of 4

Ц

Total Depth: 140 ft. Latitude: 47.60283° Top Elevation: 2077.0 ft. Longitude: -103.25881° Vert. Datum: Station:	Drilli Drilli Drill Othe	ing M ing C Rig I er Co	ethod: ompan <u>;</u> Equipm mment	y: ent: s:	HSA/I Inters CME	Mud tate 55 T	<u>Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: <u>rack Rig</u> Hammer Typ	<u>8 in.</u> <u>AWJ</u> e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: _1 0 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60
Medium stiff to stiff, brown, <i>Lean Clay with</i> <i>Sand (CL)</i> to <i>Sandy Lean Clay (CL)</i> ; moist; interbedded thin to medium spaced silt to fine sand layers; trace roots. Landslide Debris - Calcite veins from 0 to 5 feet. - Sand layer from 15 to 19 feet.			\$-1 \$-2 \$-3 \$-3 \$-4 \$-5 \$-4 \$-5 \$-6			5 10 15		
DISPLACED CLAYSTONE: very low strength, brown to dark brown to gray; thinly to thickly laminated, laminations dipping approximately 10 to 40 degrees, iron stains; moderately weathered (Landslide Debris/Sentinel Butte	19.0		S-7 S-8 P P S-10 S-2 P S-10 S-10 S-10 S-10 S-10 S-10 S-10 S-10			20 25		
Formation). [Hard, <i>Fat Clay (CH);</i> moist.] DISPLACED CLAYSTONE: very low strength, green to green-gray; thin bedded to thinly laminated; fresh; trace carbonaceous fragments (Landslide Debris/Sentinel Butte	27.0		S-13 S-12S-11			30	• • •	р С С С С С С С С С С С С С С С С С С С
Formation). [Very stiff to hard, <i>Fat Clay (CH);</i> moist.] DISPLACED CLAYSTONE: very low strength, gray; thinly laminated to thickly laminated; fresh; trace carbonaceous fragments	00.0		7 S-16S-15 S-14			40		
(Landslide Debris/Sentinel Butte Formation). [Hard, <i>Fat Clay (CH</i>); moist.]	49.7		S-19 S-18 S-1			45 50	•	
CONTINUED NEXT SHEET	51.0		S-21 S-20			00	0 20 40	76 76 50 80 100
See Sample Not Recovered Sec Sample Not Recovered Inclinometrice Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered Sec Sample Not Recovered Standard Penetration Test Sec Sample Not Recovered	er and F er Cement	Piezon : Grou	neter t				Image: Second state Image: Second stat	Recovery (%) 175mm) ← ent ←(use scale at top) ↓ Liquid Limit ←
NOTES NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions. 2. The stratification lines represent the approximate boundaries bot	abbrevia	itions :	and		Pr Billii	US oje ngs	-85 - I-94 to Watford C ct No. 9-085(085)075, , McKenzie, and Stark	ity Bypass PCN 20046 Counties, ND
 2. The strainfation mes represent the approximate boundaries between transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level if indicated above is for the date specified and the subsurface materials. 	underst	anding	s, and tr g of the		L	.0	g of Boring Ri	P-127-04
 5. USCS designation is based on visual-manual classification and so 6. Hole locations based on approximate measurements from existin professional survey. 	elected g site fe	lab tes atures	sting. s or	-	Oct		er 2016 23- NON & WILSON, INC. al and Environmental Consultants	1-01453-230

Total Depth: 140 ft. Latitude: 47.60283° Top Elevation: 2077.0 ft. Longitude: -103.25881° Vert. Datum: Station:	_ Drill _ Drill _ Drill _ Oth	ing M ing C Rig I er Co	ethod: ompan Equipm mment	y: ent: s:	HS, Inte CM	A/Mud erstate E 55 T	Rotary Hole Diam.: <u>8 in.</u> Drilling Service Rod Type.: <u>AWJ</u> irack Rig Hammer Type: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
DISPLACED CLAYSTONE: very low strength, green-gray; medium bedded to thickly laminated; fresh; trace carbonaceous fragments; Slickensided joint dipping approximately 70 degrees (Landslide Debris/Sentinel Butte Formation). [Hard, <i>Fat Clay (CH);</i> moist.] DISPLACED CLAYSTONE: very low strength, gray; thickly to thinly laminated; fresh; thinly interbedded siltstone (Landslide Debris/Sentinel Butte Formation). [Hard, <i>Fat Clay (CH);</i> moist.] DISPLACED COAL: very low strength, black; bedding dipping approximately 20 to 30 depresed (Landslide Debris/Sentinel Butte	- 56.0 - 65.0 - 67.0		1 S-30 S-28 S-	Groundwater Not Encountered During Drilling		60 65 70 75	LL=101
degrees (Landslide Debris/Sentinel Butte Formation). DISPLACED CLAYSTONE: very low strength, gray; thin bedded to thickly laminated, bedding dipping approximately 20 to 80 degrees; fresh; few joints dipping approximately 90 degrees			S-34 S-33 S-32 S-31			80 85	94 LL=118
 [Very stiff to hard, <i>Fat Clay (CH);</i> moist.] Green-gray and thin bedded from 67 to 70 feet. Green-gray and thin bedded from 82.5 to 85 feet. Thinly to thickly laminated from 95 to 99 feet. Trace to few carbonaceous fragments from 			S-39 S-38 S-37 S-36 S-35			90 95	100 L=92
 99 to 116 feet. Green-gray from 100 to 101.5 feet. Coal from 101.7 to 102.2 feet and tilted. Slickensided joint dipping approximately 60 degrees at 104 feet. Coal from 107.2 to 107.5 feet. CONTINUED NEXT SHEET 			S-43 S-42 S-41 S-40			105	
★ Sample Not Recovered Inclinomed ⊥ Standard Penetration Test Piezometration ⑤ 3" O.D. Thin-Walled Tube Bentonite Modified California Sampler Image: Slough	ter and l er -Cemen	Piezon t Grou	neter t	[US-	85 - I-94 to Watford City Bypass
NOTES Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. The stratification lines represent the approximate boundaries bet transition may be gradual. The discussion in the text of this report is necessary for a proper protection. 	abbrevia tween so	ations bil type tanding	and s, and th g of the	ne	Bi	Proje Ilings	ct No. 9-085(085)075, PCN 20046 , McKenzie, and Stark Counties, ND G OF BORING RP-127-04
 Groundwater level, if indicated above, is for the date specified and may vary. USCS designation is based on visual-manual classification and selected lab testing Hole locations based on approximate measurements from existing site features or 					0	ctobe	r 2016 23-1-01453-230
professional survey.	J				Ge	Ditechnica	al and Environmental Consultants FIG. D-3 Sheet 2 of 3 REV.3

Shee

REV 3

Total Depth:170 ft.Latitude:47.60812°Top Elevation:2192.0 ft.Longitude:-103.26101°Vert. Datum:Station:Horiz. Datum:Offset:-	Drillin Drillin Drill Othe	ng M ng C Rig E er Co	lethod: ompan Equipm mment	y: ient: :s:	HSA Inter CME	VMud rstate = 55 1	<u>d Rotary</u> Hole Diam.: <u>8 in.</u> <u>a Drilling Servic</u> e Rod Type.: <u>AWJ</u> <u>Track Rig</u> Hammer Type: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
Soft to medium stiff, brown to gray, <i>Fat Clay</i> (<i>CH</i>); moist; trace roots; calcite veins; trace to some carbonaceous fragments and bedrock fragments. Landslide Debris			s-1 s-2 s-3			5	
- Iron oxide stains and 70 degree bedding from			s-4 S-5			10	
- Clayey sand from 14 to 17 feet.			S-6			15	
- Blocky from 18.5 to 24.0 feet.			s-8			20	
DISPLACED CLAYSTONE: very low strength, green-gray; thinly bedded, slickensided joints; fresh to moderately weathered (Landslide Debris/Sentinel Butte Formation).	24.0		9-11 \$-10			25	1 99 11
[Stiff to very stiff, <i>Fat Clay (CH);</i> moist.] - Coal seam from 25 to 25.3 feet. - Coal seam from 27.1 to 27.5 feet.	20.0		S-13 S-12 S			30	
thickly laminated; fresh; few carbonaceous fragments; few sand (Sentinel Butte Formation).			S-15 S-14			35	
[Very stiff to hard, <i>Fat Clay (CH); moist.</i>] COAL: very low strength, black (Sentinel Butte Formation).	42.0 44.0		S-17 S-16			40	* • 74
LEGEND ★ Sample Not Recovered ↓ Standard Penetration Test ↓ Standard Penetration Test ↓ Modified California Sampler	er and P er Cement	'iezon Grou	neter t				0 20 40 60 80 100 ⊠ RQD (%) ⊠ Recovery (%)
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions.	abbreviat	tions	and		F Bill	US Proje lings	S-85 - I-94 to Watford City Bypass ect No. 9-085(085)075, PCN 20046 s, McKenzie, and Stark Counties, ND
 The stratification lines represent the approximate boundaries bet transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	ween soi understa	il type andinę	s, and th g of the	ne		LO	OG OF BORING RP-127-05
 4. Groundwater level, if indicated above, is for the date specified an 5. USCS designation is based on visual-manual classification and s 	id may va elected la	ary. ab tes	sting.		00	tobe	er 2016 23-1-01453-230
 Hole locations based on approximate measurements from existin professional survey. 	ig site fea	atures	s or		SH Geo		NON & WILSON, INC. cal and Environmental Consultants FIG. D-6 Sheet 1 of 4

Total Depth: 170 ft. Latitude: 47.60812° Top Elevation: 2192.0 ft. Longitude: -103.26101° Vert. Datum: Station:	Drillin Drillin Drill Othe	ng M ng C Rig I er Co	lethod: ompar Equipm mmen	iy: nent: ts:	HSA Intei CMI	VMud rstate E 55 1	I Rotary Hole Diam.: <u>8 in.</u> 2 Drilling Service Rod Type.: <u>AWJ</u> Track Rig Hammer Type: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
CLAYSTONE: very low strength, gray; thin to very thinly bedded; fresh (Sentinel Butte Formation).			S-18				
[Hard, <i>Fat Clay (CH);</i> moist.]			19			50	98
- Few to trace carbonaceous fragments from 44 to 47.5 feet.			S-20			55	
			S-21			60	
			S-22			65	
		·/////////////////////////////////////	S-23			70	•
			S-24	J Drilling		75	
CLAYSTONE: very low strength, green-gray; slightly blocky; fresh (Sentinel Butte	80.0		S-25	ared During		80	98 ● 74 ■ 74 ■ 11=1
Formation). [Hard, <i>Fat Clay (CH)</i> ; moist.] $_{\odot}$ - Coal seam from 80.8 to 81.1 feet.	84.0		7 S-26 H	ater Not Encount		85	WC=68 50/3*
COAL: very low strength, black (Sentinel Butte	89.0		S-2.	oundwa			50/2*
LEGEND S LEGEND S Sample Not Recovered Inclinomet Inclinomet Standard Penetration Test Inclinomet S 3" O.D. Thin-Walled Tube Modified California Sampler Slough	er and P er Cement	Piezon Grou	neter t				0 20 40 60 80 100
NOTES NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions.	abbrevia	tions	and		F Bil	US Proje lings	-85 - I-94 to Watford City Bypass ect No. 9-085(085)075, PCN 20046 s, McKenzie, and Stark Counties, ND
 2. The stratification lines represent the approximate boundaries better transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	ween soi understa	il type andin	es, and t g of the	he		LO	G OF BORING RP-127-05
 4. Groundwater level, if indicated above, is for the date specified an 5. USCS designation is based on visual-manual classification and s 	id may va elected la	ary. ab te	sting.		00	ctobe	er 2016 23-1-01453-230
6. Hole locations based on approximate measurements from existin professional survey.	ig site fea	ature	s or		SH Geo		NON & WILSON, INC. al and Environmental Consultants Sheet 2 of 4

Total Depth: 170 ft. Latitude: 47.60812° Top Elevation: 2192.0 ft. Longitude: -103.26101° Vert. Datum: Station:	Drillir Drillir Drill I Othe	ng M ng C Rig I r Co	lethod: ompan Equipm mment	y: ent: s:	HS. Inte CM	A/Mud erstate E 55 T	Rotary H Drilling Service F Track Rig H	Hole Diam.: Rod Type.: Hammer Type	8 in. AWJ e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATIC A Hammer W	DN RESIST t. & Drop: <u>1</u> 0	ANCE (blows/foot) 40 lbs / 30 inches
CLAYSTONE (continued) - Slickensided joint dipping approximately 45 degrees at 140.5 feet.			S-44 S-43			140		•	96 50/6"
			S-46			145 150		•	50/6" ▲ 80/12"
- Green-gray, very thin to thin bedded from 158 to 161 feet.			548 S-47			155		•	92 92
			-50 S-49 S			165		•	LL=
- Concretion inferred from drill action from 169 to 170 feet.	170.0					170			
BOTTOM OF BORING COMPLETED ON 7/19/2016						175			
	er and Pi er Cement	iezon Grou	neter t				0 20 ⊠ R(≎ Plastic Lim	40 6 QD (%) 22 % Fines (<0.0 % Water Conto it ↓ ●	60 80 100 Recovery (%) 75mm) ← ent ← (use scale at top) ↓ Liquid Limit ←
<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions.	abbreviat	ions	and		Bi	US- Proje Ilings	-85 - I-94 to V ct No. 9-085(, McKenzie, a	Vatford Ci (085)075, and Stark	ty Bypass PCN 20046 Counties, ND
 The stratification lines represent the approximate boundaries between transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	ween soi understa	l type Inding	es, and th g of the	ie		LO	g of Bof	RING RF	2-127-05
 Groundwater level, if indicated above, is for the date specified and USCS designation is based on visual-manual classification and si 	nd may va	ary. ab te:	sting.		0	ctobe	er 2016	23-	1-01453-230
 Hole locations based on approximate measurements from existing professional survey. 	s or	F	SHANNON & WILSON, INC. FIG. D-6 Geotechnical and Environmental Consultants				FIG. D-6 Sheet 4 of 4		

Total Depth: 202.5 ft. Latitude: ~ 47.611° Top Elevation: ~ 2491 ft. Longitude: ~ 103.25861° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	Drilli Drilli Drill Othe	ing N ing C Rig I er Co	lethod: compan Equipm omment	 y: <u></u> ient: is:	ISA/Mud hterstate IME 55 T	<u>Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: T <u>rack Rig</u> Hammer Typ	8 in. AWJ e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 0 20	ANCE (blows/foot) 140 lbs / 30 inches 40 60
SANDSTONE: very low strength, brown; thinly to thickly laminated; highly to completely weathered; gypsiferous lenses; calcite veins (Sentinel Butte Formation). [Loose, <i>Clayey Sand (SC)</i> to <i>Sandy Lean Clay</i> <i>(CL)</i> ; moist.			S-1		5 -		
- Two-inch-thick sandy iron stained zone at 11.5 feet.	13.5		s-3∮		10		98 LL=1
laminated to thin bedding; moderately weathered; several 90 degree joints with iron oxide stains (Sentinel Butte Formation).			S-4		15	•	84
[Very stiff to hard, <i>Fat Clay (CH)</i> ; moist]. - Fat clay with sand from 13.5 to 18.0 feet.			S-5		20	• *	
- Joint dipping approximately 70 degrees at 25.9 feet.			S-6		25	+	LL=1
- Gray; thickly to thinly laminated; slightly weathered to fresh; trace carbonaceous fragments from 28 to 43.5 feet.			S-7		30	 2	100 LL=6
			S-8		35		
	44.0		S-9		40	•	
CONTINUED NEXT SHEET <u>LEGEND</u> * Sample Not Recovered Standard Penetration Test ③ 3" O.D. Thin-Walled Tube Modified California Sampler		KXX				0 20 40 ⊠ RQD (%) ℤ ◇ % Fines (<0.0 ● % Water Com Plastic Limit	60 80 100 Recovery (%) D75mm) - tent(use scale at top)
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions.	abbrevia	itions	and	E	US- Proje Billings	-85 - I-94 to Watford C ct No. 9-085(085)075, , McKenzie, and Stark	ity Bypass PCN 20046 Counties, ND
 I he stratification lines represent the approximate boundaries bet transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	ween so underst	andin	es, and th g of the	ne	LO	g of Boring R	P-127-06
 Groundwater level, if indicated above, is for the date specified ar USCS designation is based on visual-manual classification and s 	nd may v elected	ary. lab te	sting.		Octobe	er 2016 23	-1-01453-230
 Hole locations based on approximate measurements from existin professional survey. 	ig site fe	ature	s or		SHANN Beotechnica	INC. A WILSON, INC.	FIG. D-7 Sheet 1 of 5

<u>P</u>

ш

Total Depth: 202.5 ft. Latitude: ~ 47.611° Top Elevation: ~ 2491 ft. Longitude: ~ -103.25861° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	Drilli Drilli Drilli Othe	ing M ing C Rig I er Co	lethod: compar Equipn ommen	: ny: nent: its:	HSA/Muc Interstate CME 55	<u>d Rotary</u> Hole Diam.: <u>e Drilling Servic</u> e Rod Type.: <u>Track Rig</u> Hammer Ty	<u>8 in.</u> <u>AWJ</u> pe: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Cround	Water Depth, ft.	PENETRATION RESIS ▲ Hammer Wt. & Drop:_ 0 20	TANCE (blows/foot) <u>140 lbs / 30 inches</u> 40 60
SILTSTONE: very low strenght, gray; thin bedded to thinly laminated; fresh; thin to medium spaced claystone layers (Sentinel Butte Formation).			S-19		05		71
[Medium dense to very dense, <i>Sandy Silt (ML)</i> ; moist].			S-20	ed During Drilling	95	INPO	
			S-21	er Not Encounter	100	•	80/11"
			S-22	Groundwat	105		
 Dark brown and kerogen rich from 111.5 to 113 feet. Slickensided joint dipping approximately 30 to 	113.0		S-24 S-23		110	•	50/3"
COAL: very low strength, black (Sentinel Butte Formation).	115.3		s-26 s-25 H H		115		50/5" Wc=109 .50/3"
COAL: very low strength, black (Sentinel Butte Formation). CLAYSTONE: very low strength, gray; thin	118.5		-28 S-27		120		75
bedded to thinly laminated; fresh (Sentinel Butte Formation). [Hard, <i>Fat Clay (CH)</i> ; moist]. CLAYSTONE: very low strength, green-gray;	125.5		S-29 S		125	•	/
thin bedded to thinly laminated; fresh; trace carbonaceous fragments (Sentinel Butte Formation). [Hard, <i>Fat Clay (CH)</i> ; moist].			S-31 S-30		130	•	
CONTINUED NEXT SHEET			S-32				91 LL=
LEGEND Sample Not Recovered Standard Penetration Test 3" O.D. Thin-Walled Tube Modified California Sampler						0 20 40 ⊠ RQD (%) ♦ % Fines (<0 ● % Water Co Plastic Limit	60 80 100
<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions.					US-85 - I-94 to Watford City Bypass Project No. 9-085(085)075, PCN 20046 Billings, McKenzie, and Stark Counties, ND		
 The stratification lines represent the approximate boundaries bet transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	ween so underst	oil type andin	es, and t g of the	the	LO	og of Boring R	P-127-06
 Groundwater level, if indicated above, is for the date specified ar USCS designation is based on visual-manual classification and s 	nd may v elected	ary. lab te	sting.		Octob	er 2016 23	3-1-01453-230
 Hole locations based on approximate measurements from existin professional survey. 	ig site fe	ature	s or		SHAN Geotechnic	NON & WILSON, INC. cal and Environmental Consultants	FIG. D-7 Sheet 3 of 5

Total Depth: 202.5 ft. Latitude: ~ 47.611° Top Elevation: ~ 2491 ft. Longitude: ~ 103.25861° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	Drilli Drilli Drilli Othe	ing N ing C Rig I er Co	lethod: compan Equipm omment	<u></u> ny: <u></u> nent: <u></u> ts:	SA/Mud erstate ME 55 1	<u>I Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: Track Rig Hammer Typ	8 in. AWJ e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 020	ANCE (blows/foot) 140 lbs / 30 inches 40 60
CLAYSTONE: very low strength, gray; very thin to medium spaced bedding; fresh (Sentinel Butte Formation). [Hard, <i>Fat Clay (CH)</i> ; moist].			5 S-34 S-33		140	•	
- Thinly laminated from 125.5 to 132.5 feet. CLAYSTONE: very low strength, gray; thinly to thickly laminated; fresh; trace carbonaceous fragments (Sentinel Butte Formation).	143.0		-37 S-36 S-3		145	•	
[Hard, <i>Fat Clay (CH)</i> ; moist].			S-39 S-38 S		150	•	
 Brown, kerogen rich from 143 to 144 feet. Greenish gray, trace to few carbonaceous fragments from 144 to 146 feet. 			S-41 S-40		155	•	98
	100.0		S-42		160	•	
COAL: very low strength, black (Sentinel Butte Formation).	163.0		S-43		165		WC=72 50/3*
	173.0		8-8 ₩		170		50/1* * WC=96
CLAYSTONE: very low strength, gray; thinly to thickly laminated; fresh; trace carbonaceous fragments (Sentinel Butte Formation). [Hard, <i>Fat Clay (CH</i>); moist].	170.0		S-45		175	•	704
CONTINUED NEXT SHEET							100
LEGEND Sample Not Recovered Standard Penetration Test 3" O.D. Thin-Walled Tube Modified California Sampler						0 20 40 ⊠ RQD (%) ∅ ◇ % Fines (<0.0 ● % Water Com Plastic Limit ↓	60 80 100 ² Recovery (%) 075mm) ← tent ←(use scale at top) ⊢ Liquid Limit ←
<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions.	abbrevia	itions	and	В	US Proje illings	-85 - I-94 to Watford C ect No. 9-085(085)075, s, McKenzie, and Stark	ity Bypass PCN 20046 Counties, ND
 The stratification lines represent the approximate boundaries bet transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	ween so underst	oil type andin	es, and ti g of the	he	LO	g of Boring Ri	P-127-06
 Groundwater level, if indicated above, is for the date specified and may vary. UCCO designation is based on incident way whether if with the intervention of the date specified and may vary. 				c	October 2016 23-1-01453-230		
 by the second designation is based on visual-manual classification and selected iab testing. Hole locations based on approximate measurements from existing site features or professional survey. 				S	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet 4 of 5		

Total Depth: 202.5 ft. Latitude: ~ 47.611° Top Elevation: ~ 2491 ft. Longitude: ~ -103.25861° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Drilli _ Drilli _ Drill _ Othe	ng M ng C Rig I er Co	lethod: company Equipme omments	<u>HSA/M</u> Intersta ent: <u>CME 5</u>	1ud ate 55 T	Rotary Hole Diam.: Drilling Service Rod Type.: Track Rig Hammer Ty	8 in. AWJ pe: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Deptn, π.	PENETRATION RESIS ▲ Hammer Wt. & Drop:_ 0 20	FANCE (blows/foot) <u>140 lbs / 30 inches</u> 40 60, 10
CLAYSTONE (continued)			S-46				
 One-inch-thick, brittle, cemented zones at 185.2 and 186 feet. 		//////////////////////////////////////	S-47	1:	85	•	
SANDSTONE: very low strength, gray; thin bedded; fresh (Sentinel Butte Formation). [Very dense, <i>Clayey Sand (SC)</i> to <i>Sandy Fat</i> <i>Clay (CH)</i> ; moist].	188.0		S-48	1	90	I O	
COAL: very low strength, black (Sentinel Butte Formation).	194.0		S-49	1	95		50/6"▲ WC=86
CLAYSTONE: very low strength, gray; thinly to thickly laminated; fresh (Sentinel Butte	202.0		S-50	2	00	•	73▲
Elevent Clay (CH); moist]. BOTTOM OF BORING COMPLETED ON 8/4/2016				2	205		
				2	10		
				2	15		
9177-100 1				2	20		
LEGEND * Sample Not Recovered Standard Penetration Test 3" O.D. Thin-Walled Tube Modified California Sampler						0 20 40 ⊠ RQD (%) ⊘ % Fines (<0 ● % Water Con Plastic Limit ►	60 80 100 2 Recovery (%) 075mm) ← ntent ← (use scale at top) ↓ Liquid Limit ←
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.	abbrevia	tions	and	L Pro Billin	JS- oje	-85 - I-94 to Watford (ct No. 9-085(085)075 , McKenzie, and Starl	City Bypass , PCN 20046 & Counties, ND
 2. The stratification lines represent the approximate boundaries bet transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	tween so	il type andin	es, and the	Ľ	0	g of Boring R	P-127-06
 Groundwater level, if indicated above, is for the date specified and may vary. USCS designation is based on visual-manual classification and selected lab testing. 					October 2016 23-1-01453-230		
Hole locations based on approximate measurements from existing site features or professional survey.				SHA Geotec	hnica	ION & WILSON, INC. al and Environmental Consultants	FIG. D-7 Sheet 5 of 5

Total Depth: 131.5 ft. Latitude: ~ 47.60874° Top Elevation: ~ 2250 ft. Longitude: ~ 103.25886° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	Drill Drill Drill Oth	ing M ing C Rig E er Co	ethod: ompany quipme mments	/: _/ ent: _/ s:	HSA/Mud Interstate Diedrich L	<u>Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: D-50 Track Rig Hammer Typ	AWJ e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: 020	ANCE (blows/foot)
Very stiff to medium stiff, brown to gray, <i>Fat</i> <i>Clay (CH)</i> to <i>Lean Clay (CL)</i> ; moist; trace to few carbonaceous fragments; few to little sand and gravel. Fill			6-1		5		
			5-2 5-3		10	•	86
			S-4 ▼		20		78
Medium dense, brown, Clavey Sand (SC);	33.0		5-5⊥ 5-6⊥		×11/1/////////////////////////////////		
moist. Landslide Debris	28.0		6-7		35	• •	LL=
DISPLACED CLAYSTONE: very low strength, gray; blocky; moderately to slightly weathered; bedding dipping approximately 40 to 50 degrees (Landslide Debris/Sentinel Butte Formation). [Stiff, <i>Fat Clay (CH</i>); moist]. - Few to little carbonaceous fragments from	30.0		5-8⊥ 6-9►		40		• • • • • • • • • • • • • • • • • • •
40.5 to 41.5 feet. CONTINUED NEXT SHEET							
* Sample Not Recovered Standard Penetration Test Modified California Sampler Standard Penetration Test Modified California Sampler Slough	er and l er Cemen	^D iezon t Grout	ieter ⊉G ⊉G	round \ round \	Water Leve Water Leve	0 20 40	80 80 100 ⑧ Recovery (%) 075mm) ← tent ← (use scale at top) ┥ Liquid Limit ←
Inclinome NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions	ter and abbrevia	SOND	=X and		S-85 - I Proje Billinas	-94 to Watford City By ct No. 9-085(085)075, McKenzie. and Stark	pass Addendum PCN 20046 Counties. ND
 The stratification lines represent the approximate boundaries bet transition may be gradual. The discussion in the text of this report is necessary for a proper 	ween so unders	bil type tanding	s, and the	e	LO		P-127-07
nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified ar	nd may	/ary.	tine		Septer	nber 2017 23	-1-01453-230
 OSCS designation is based on visual-manual classification and s Hole locations based on approximate measurements from existin professional survey. 	elected ng site fe	ab tes eatures	or or		SHANN Geotechnic	NON & WILSON, INC. al and Environmental Consultants	FIG. D-8 Sheet 1 of 3

9/15/17

POCKETPEN

ш

LOG

ASTER

Total Depth: 131.5 ft. Latitude: ~ 47.60874° Top Elevation: ~ 2250 ft. Longitude: ~ 103.25886° Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	Drilli Drilli Drill Othe	ing M ing C Rig I er Co	lethod: company Equipme omments	<u>HS</u> r: <u></u> ent: <u></u> s:	A/Mud erstate edrich L	<u>Rotary</u> Hole Diam.: <u>Drilling Servic</u> e Rod Type.: D-50 Track Rig Hammer Type:	AWJ Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTAN ▲ Hammer Wt. & Drop: <u>140</u>	NCE (blows/foot) 0 lbs / 30 inches 40 60
COAL: very low strength, black (Sentinel Butte Formation). CLAYSTONE: very low strength, gray; very thin bedded to laminated; fresh (Sentinel Butte Formation). [Hard, <i>Fat Clay (CH</i>); moist; trace	100.0		S-24 S-23		105		50/2" W6=87
carbonaceous fragments].			S-25		110	•	
			-27 S-26		115 120		
			&. 		125	•	
BOTTOM OF BORING COMPLETED ON 4/28/17	131.5		S-29		130	• 4	100 μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ
					135 140		
~					145		
LEGEND S LEGEND S ★ Sample Not Recovered S Inclinomet S Piezomete	er and F	Piezor	neter ⊻ G	round Wa	ter Leve	0 20 40 60	80 100 Recovery (%) imm) • it •(use scale at top)
Notified California Sampler Bentonite- Slough Inclinomet NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, a definitions.	Cement er and s	t Grou SONE ations	nt ÷ 0 NEX and	US-	85 - I Proje	Plastic Limit -94 to Watford City Bypa ect No. 9-085(085)075, P s, McKenzie, and Stark C	Liquid Limit ass Addendum CN 20046 Counties, ND
 The stratification lines represent the approximate boundaries between transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. Groundwater level if indicated above is for the data specified and 	ween so underst	bil type tandin	es, and the	e	LO	g of Boring RP-	-127-07
 Groundwater level, it indicated above, is for the date specified and may vary. USCS designation is based on visual-manual classification and selected lab testing. Hole locations based on approximate measurements from existing site features or professional survey. 				S S Ge	September 2017 23-1-01453- SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. D		

Appendix E

Attachments

Exhibit E-1: Historical A-DInSAR Analysis of the Horseshoe Bend Landslide (North Dakota, USA)

Technical report

HISTORICAL A-DINSAR ANALYSIS OF THE HORSESHOE BEND LANDSLIDE (NORTH DAKOTA, USA)

Technical report

<u>CLIENT</u>: Shannon & Wilson Inc. <u>TO THE ATTENTION OF</u>: Joey Goode

REF. ORDER: NZ0029-U_170119 (accepted on May 29th, 2019)

Edited by: Dr. S. Scancella - Dr. L. Rocca - A. Rocca, PhD Reviewed by: Prof. P. Mazzanti - Dr. A. Brunetti Date of issue: 12th of July, 2019 Prot. N°: NZ0423-U_120719

NHAZCA S.r.I.

Share capital: € 40.000 VAT n°: 10711191006 REA. N° 1250972

Technical report

SUMMARY

GLOS	SARY	3
1. Intro	oduction	5
2. Sate	ellite SAR Interferometry	6
2.1.	General information on SAR (Synthetic Aperture Radar) systems	6
2.2.	SAR satellite images	8
2.3.	Sentinel-1 constellation by the European Space Agency (ESA)	10
2.4.	Basic Principles of differential SAR interferometry (DInSAR)	11
2.5.	Advanced DInSAR: Persistent Scatterers Interferometry (PSI)	13
3. Per	formed activities	17
3.1.	Acquisition of the dataset	17
3.2.	Processing and analysis of SAR images by A-DInSAR techniques	21
3.3.	Post-processing and validation	21
3.4.	Processing and analysis of satellite SAR images by DInSAR technique	22
4. ACł	HIEVED RESULTS	23
5. FIN	IAL REMARKS AND OUTLOOKS	36
6. BIB	LIOGRAPHY	41

GLOSSARY

A-DInSAR

A-DInSAR is an acronym for "Advanced Differential Interferometric Synthetic Aperture Radar". This term groups several processing techniques based on multi-temporal stacks (see "Stack") of satellite SAR images.

LOS

Line of sight of the satellite (measured along the sensor-target line).

Master

It is called "master" image, the SAR image in a stack of data is the one used as a reference for other images (so called, slaves). All images are thus referred to the master for the coregistration stage and also for other steps in the processing chain (e.g. for the computation of interferograms).

Orbital geometry

Satellites equipped with SAR sensors fly around the Earth along approximately N-S orbits. Therefore, satellites fly over the same area both during the ascending (South to North) and descending (North to South) orbits. Due to the inclination of the line of sight (LOS) with respect to the nadir, the satellite is able to look the same area from two different points of view, during the data acquisition.

Most of the satellites use a right-looking configuration (they look to the right), so in ascending geometry the images are acquired from the West (LOS directed to the East), while in descending geometry images are acquired from East (LOS directed to the West).

Persistent Scatterers (PS)

One of the most consolidated methodologies of A-DInSAR analysis is the Persistent Scatterers Interferometry (PSI) technique. It is based on the analysis of objects (targets) on the Earth's surface characterized by a high stability over time of the electromagnetic signal backscattered toward the sensor. The typical results of the PSI technique are

NHAZCA S.r.I.

maps of geocoded measuring points (PMs), and usually colored basing on the detected velocity of displacement (mm/year).

RADAR

RADAR is an acronym for "*RAdio Detection And Ranging*": it is an object-detection system that uses electromagnetic waves to define the range, angle, or velocity of objects. A RADAR system for SAR applications consists of a transmitter emitting a microwave signal and of a receiving antenna that acquires the backscattered signal.

The system is based on the measure of the Time of Flight (TOF), namely the time required by the signal to travel from the sensor to the target.

SAR

SAR is an acronym for "*Synthetic Aperture Radar*". It is a specific kind of RADAR which takes advantage of its movement along its default trajectory (e.g. satellite orbit) to synthetize a large antenna, allowing to get better ground resolution.

Stack

Multi-temporal dataset of SAR images acquired with the same features (resolution, orbit geometry, incidence angle, etc.) on the same area in a given time interval. It represents the input raw data for analysis with the A-DInSAR approach.

1. Introduction

In the frame of the collaboration formalized on May 29th, 2019 (ref. technical offer prot. NZ0029-U_170119) from Shannon & Wilson Inc., NHAZCA S.r.I. performed the A-DInSAR analysis of the area affected by the "Horseshoe Bend Landslide" (North Dakota, USA). The aim of the study was to characterize ground and infrastructures (e.g. CanAm Highway) deformation processes in the area indicated by the client, that is about 1.25 km² wide. Nevertheless, for a suitable characterization of the landslide process, the A-DInSAR analysis has been performed on a wider area, that is about 5 km² wide (Figure 1).

Figure 1: identification of the study area on satellite optical image.

The performed activities have been calibrated based on the results achieved by the preliminary feasibility study (ref. report prot. NZ0209-U_050419), already delivered to the Client.

The A-DInSAR analysis has been performed by the available archive SAR (*Synthetic Aperture Radar*) images collected by the **Sentinel-1 satellite constellation** (European Space Agency) over the study area. Specifically, a stack of 103 SAR scenes in ascending orbital geometry and of 46 SAR scenes in descending orbital geometry have NHAZCA S.r.I.

been analyzed, respectively in the period 29th January 2015 – 26th May 2019 and 10th October 2016 – 01st August 2018.

The **A-DINSAR** (*Advanced Differential Interferometric SAR*) analysis has been performed aiming to provide widespread and detailed information for all the good natural targets identified in the study area.

In the following sections, after a short introduction about the adopted techniques and the performed activities, the achieved results are reported and discussed.

Thereafter, some calibrated conventional **DInSAR** analyses have been also performed in the study area.

The results of the A-DInSAR analysis will be also provided by the **NHAZCA InSAR Visualization Tool** web portal for an interactive visualization of data. The login data will be provided separately.

2. Satellite SAR Interferometry

InSAR (*Interferometric Synthetic Aperture Radar*) (Massonnet et al., 1998; Hanssen, 2001) can be considered the main satellite remote sensing technique used for the measurement of displacements of the Earth's surface. It is based on the comparison between different RADAR images acquired in different times over the same area. The basic principle of Multi-Image InSAR or Advanced DInSAR methodologies (A-DInSAR) consists of the combination of information from a large number of SAR images, allowing to derive the temporal evolution of displacements of objects on the ground during the period of analysis. For such analysis, the quality of the results depends on the number of available images.

A-DInSAR techniques allow to detect deformation processes, both in the past (historical analysis) and/or in progress, and to estimate their evolution in time and space.

Hereunder, InSAR satellite systems and *Persistent Scatterers technique* (PS) are described more in detail.

2.1. General information on SAR (Synthetic Aperture Radar) systems

RADAR (*RAdio Detection And Ranging*) are systems able to emit an electromagnetic pulse in the domain of microwaves and to register the return signal (*echoes*)

Technical report

backscattered by the objects in the instrumental field of view (**targets**). For this reason, RADARs are considered **active** remote sensing systems, since they don't need an external source of energy (like solar lighting), but they make use of energy (pulse) generated by the sensor. So, for example, they are able to "*see*" through clouds (in case of satellite or aerial based radar platforms).

By RADAR systems, it is possible to detect objects and to measure their distances from the sensor. For this reason, the backscattering characteristics of the targets in the field of view are very important, as well as their **dielectric** properties.

SAR (*Synthetic Aperture Radar*) is a specific kind of RADAR system: the main characteristic of SAR systems is to take advantage of the motion of the sensor along a pre-defined trajectory (e.g. the orbit of a satellite equipped with the SAR sensor) in order to observe the same area from different points of view, thus simulating a large antenna able to get high resolution on the ground. This specific geometry of acquisition is sketched in Figure 2.

Figure 2: SAR acquisition geometry.

Technical report

SAR images are characterized by a **Slant Range** and **Azimuth** resolution. The first one (*Slant Range*) refers to the resolution along the direction of propagation of the RADAR signal, orthogonal to the satellite orbit, which is inclined with an *off-nadir* angle θ specific for each satellite. The second one (*Azimuth*) refers to the resolution along the flight direction that, in case of satellite, corresponds to the orbit that can be approximately considered North-South.

2.2. SAR satellite images

A satellite SAR image is made up by a matrix of pixels arranged along the directions of azimuth (parallel to the movement of the satellite) and slant range (orthogonal with respect to the flight direction).

Each pixel contains information about amplitude and phase of the signal backscattered from the observed objects. Amplitude represents the energy of the signal reflected to the sensor, while the phase contains the most important information for interferometric purposes: the distance between the sensor and the backscattering target on the ground.

Satellites can collect data into two different orbital geometries: the satellite revisits the same area following both a path approximately from North to South (descending geometry) and a path from South to North (ascending geometry) (Figure 3). So, the same area is detected by two different angles of view.

NHAZCA S.r.I.

e-mail: info@nhazca.com

HISTORICAL A-DINSAR ANALYSIS OF THE HORSESHOE BEND LANDSLIDE (NORTH DAKOTA, USA)

Technical report

Figure 3: acquisition geometries of SAR images.

The acquisition geometry, according to the orbits of the SAR sensors, can introduce some uncertainties in the detection of deformation processes characterized by some specific features. For example, areas characterized by steep slopes may appear distorted (i.e. *foreshortening* effect) or even be in shadow (*shadowing*). In these cases, the analysis of the data can be complex and inaccurate (Figure 4).

Moreover, movements with a strong N-S horizontal component cannot be properly analyzed and the displacement values can be underestimated.

e-mail: info@nhazca.com

00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823 HISTORICAL A-DINSAR ANALYSIS OF THE HORSESHOE BEND LANDSLIDE (NORTH DAKOTA, USA)

Technical report

2.3. Sentinel-1 constellation by the European Space Agency (ESA)

Sentinel-1 mission is part of the Copernicus program, with a partnership between ESA (European Space Agency) and European Commission, representing a revolution in the Earth Observation scientific world.

Sentinel-1 is a two-satellite constellation with the prime objectives of Land and Ocean monitoring. The goal of the mission is to provide C-band SAR data continuity following the retirement of ERS-2 and the end of the Envisat mission. The first satellite (Sentinel-1A) launch occurred on 03 April 2014, meanwhile the second one (Sentinel-1B) was launched two years later.

Both satellites carry onboard a C-band SAR sensor (5,40 GHz frequency and about 5,55 cm wavelength), able to acquire SAR images with extremely variable resolution and coverage (up to 400 km of swath). Specifically, the standard acquisition mode is the Interferometric Wide Swath (IW), characterized by 250 km wide images and resolution comparable to the first-generation ESA satellites (ERS and Envisat).

Such effective performances are possible thanks to an innovative acquisition mode, called TOPS (Terrain Observation with Progressive Scans SAR).

One of the main advantages of Sentinel-1 is the short revisit time, that is 12 days (or 6 days with the acquisition of both satellites over the same area for specific regions of the planet).

[information from earth.esa.int]

2.4. Basic Principles of differential SAR interferometry (DInSAR)

DInSAR (Differential Interferometric SAR) is the traditional technique used for the detection of displacements from SAR Interferometry. It is based on the analysis of the variation of the phase signal between pairs of images collected at different times over the same area, thus allowing to measure the displacements on the Earth's surface.

Information about the phase difference is derived from the **Interferogram** which represents the basic element of this methodology.

In particular, the phase of each pixel given by the sum of two terms:

$$\varphi = \varphi_s + \varphi_r$$
(1)

The first (φ_s) is related to the scatterers within the scene; the second (φ_r) depends on the double path satellite-target and on the wavelength of the electromagnetic pulse emitted and then recorded by the sensor:

$$\varphi_r = \frac{4 \cdot \pi \cdot r}{\lambda}$$
(2)

r is the distance between the satellite and the target on the ground along the range direction and λ is the wavelength. However, the phase of a single SAR image cannot be used because:

• φ_s is random;

• φ_r depends on *r*, that is in the order of hundreds of kilometers and on λ that, on the contrary, is in the order of few centimeters.

In fact, the electromagnetic wave, for each pixel, is sent from the SAR antenna to the Earth's surface; during the satellite-ground path, the sinusoidal signal performs millions NHAZCA S.r.I.

of cycles, hits the targets with a particular phase value and it's randomly backscattered (multiple reflections, φ_s). Finally, part of the signal returns to the satellite, that records the information.

By considering the phase difference between two SAR images, φ_s of the same target is deleted and the **interferometric phase** $\Delta \phi$ is given by:

$$\Delta \phi = \frac{4 \cdot \pi}{\lambda} \cdot \Delta R \tag{3}$$

 $\Delta \phi$ is characterized by the following main contributions:

$$\Delta \phi = \Delta \phi_f + \Delta \phi_{topo} + \Delta \phi_{displ} + \Delta \phi_{atm} + \Delta \phi_{err}$$
(4)

 $\Delta \phi_f$ is called "flat earth phase" and is due to the different angles of view of the satellites during the acquisition of the image. It is a contribution easy to remove.

 $\Delta \phi_{topo}$ is the phase component containing the topographical information, that is the relation between phase and heights. This phase contribution can be estimated by using a *DEM* (Digital Elevation Model).

 $\Delta \phi_{atm}$ represents a random element caused by the different weather conditions during the acquisition of SAR images over time.

 $\Delta \phi_{displ}$ is the contribution to the interferometric phase due to the earth's surface displacements.

 $\Delta\phi_{\rm err}\,$ is a residual noise not directly determinable.

The differential interferogram is obtained from (4). The flat earth contribution and the topographic phase can be easily removed by the use of a DEM. So, in order to detect the displacement information, $\Delta \phi_{atm}$ and $\Delta \phi_{err}$ have to be estimated. The acquisition system of the interferometric pairs of SAR images is characterized by the geometric baseline (also called normal or perpendicular baseline) (Figure 5) and by the temporal baseline (i.e. the time interval between two consecutive acquisitions), which can influence the quality of the results obtained with the DInSAR analysis. The normal baseline is related to the different orbital positions of the satellite during the acquisition of SAR images on the same area over time. Orbits, in fact, can slightly deviate respect to the nominal NHAZCA S.r.l.

trajectory (in the order of some hundreds of meters) and the same area is looked at with slight different angles.

The temporal baseline, on the other hand, introduces artifacts known as "temporal decorrelation" which become more and more remarkable with the increasing of the time elapsed between the acquisition of two subsequent SAR images. Such degradation of the quality is due to the variation of conditions like changes in vegetation cover, frosts, thaws, building works etc.

The interpretation of interferometric data can be further complicated due to changes of the weather conditions during the two acquisitions. The atmospheric artifacts (also known as "*Atmospheric Phase Screen*") are among the main limitations for these techniques; that is the reason why a large number of interferograms are necessary in order to estimate and remove it.

Figure 5: geometric baseline. Acquisition geometry of two SAR images. S1 and S2 represent the position of the satellites at different times; θ is the nadir-off angle; r_1 and r_2 are the satellite-target distances for two acquisitions; *B* schematically represents the geometric baseline; *z* is the measured topographic height.

2.5. Advanced DInSAR: Persistent Scatterers Interferometry (PSI)

The development of interferometric multi-image techniques (or Advanced DInSAR), represented a significant step forward in the analysis of Earth's surface deformation using satellite SAR images. First of all, the use of datasets made of many SAR images allows the estimation and the removal of the atmospheric contribution. By such

Technical report

methodologies, the multi-temporal analysis of deformation processes can be performed, and time series of displacement can be estimated for a very large number of measurement points (MP) on the observed scene.

A-DInSAR techniques are based on the analysis of objects characterized by strong stability over time in terms of reflectivity: the so called "**Persistent Scatterers (PS)**". So, the PS are favored "**measurement points**", having specific properties allowing to perform accurate measurements of displacement (in the order of a few millimeters). Good reflectors are, for example: buildings, transportation routes (roads, railways), pylons, dams, bridges etc. Under specific conditions, also outcropping rocks are good reflectors. This dense *natural* network of "measurement points" allows to detect both local scale deformation processes (e.g. those affecting a single building or structure) and large-scale deformation processes (e.g. landslides, subsidence, faults, etc.).

It is worth noting that the displacement of the measurement points is detected **along the instrumental line of sight (LOS)**. This implies that the measured displacement is the projection of the real displacement vector along the **sensor-target line**. For vertical movements (e.g. subsidence), the actual displacement can be easily retrieved by basic trigonometric functions; if the target is affected also by horizontal displacements, the achieved measurement is the result of the projection of all the components on the LOS. By the use of SAR images collected by different orbital geometries (ascending and descending) it is possible to perform more complex post-processing analysis in order to estimate the horizontal and the vertical components of the actual displacement vector.

In addition, it is worth noting that the displacement measurements are relative with respect to the time and the space. In fact, one of the first steps of A-DInSAR analysis includes the identification of a **master SAR image**: all other images, will be connected to the master one, and therefore defined "**slaves images**". The master image is properly selected in order to minimize the dispersion of temporal and/or normal baseline.

Moreover, the measurements of velocity are also differential: they do not express an absolute value of displacement over time, but a relative displacement with respect to a reference point, i.e. a point within the investigated area that is assumed as stable (not affected by movement).

NHAZCA S.r.I.

Each measurement point is characterized by a **temporal coherence** value, that is a measure of the fitting between the measured data and the deformational model used in the analysis.

If the characteristics of the backscattering targets change over time, the interferometric phase contains a random noise that shall affect the reliability of the results obtained, and the temporal coherence value decreases. Interferometric coherence ranges between 0 (no correlation between corresponding pixels of the two SAR images) to 1 (full correlation).

Thanks to the PSI technique we can retrieve for each measurement point:

- the position (i.e. its geographic coordinates: latitude and longitude);
- the average velocity of displacement (along the line sensor-target, LOS) in mm/year, with an accuracy depending on the number of available images and the sensor used (up to a few millimeters);
- the time series of displacement, starting from the first available image, with an accuracy of few millimeters on the single measure for the most reliable measurement points.

The main advantages introduced by the PSI technique are:

- the measurement points generate a "natural geodetic network": they, in fact, are already on the ground, such as buildings, roads, railways, anthropic elements, outcropping rocks. For each of them (if archive images are available) it is possible to obtain displacement measurements since 1992;
- the aerial extension of SAR images makes it possible to analyze large areas in a short time;
- the measuring accuracy is very high, thus allowing the detection of slow phenomena over large areas otherwise not detectable;
- the achieved results can be easily imported and visualized into geographic information systems (GIS) allowing rapid integration with other available data;
- the dual acquisition geometry (ascending and descending) improves the quality of the information about the analyzed phenomenon: in fact, by decomposing

Technical report

the velocity vectors and combining the two geometries, it is possible to retrieve the displacement vector component on the horizontal plane (E-W) and on the vertical axis. The horizontal component along the N-S direction cannot be measured because the orbits of operating satellites follow approximately meridian orbits.

Finally, as regards the PSI technique, it is worth noting also that:

- the presence of good targets is required as well as a suitable density of measurement points. For example, in areas completely vegetated or not visible from the satellite (e.g. shadowing), it is not possible to get information. On the other hand, areas densely urbanized are usually characterized by a very large number of measurement points, allowing to perform accurate analysis;
- the analysis of deformation processes characterized by quick evolution is quite difficult to be performed by PS technique and, in some cases, only qualitative information can be retrieved by a priori assumptions. Also, impulsive phenomena cannot be monitored by this technique, especially when centimeter scale displacements occur in a short time and in extremely localized areas.

3. Performed activities

In what follows, the performed activities are described. Specifically, the following work packages have been developed:

- Acquisition of the dataset (sect. 3.1)
- Processing and analysis of satellite SAR images by A-DInSAR techniques based on the *Persistent Scatterers Interferometry (PSI)* approach for the study area (Sect. 3.2);
- Post-processing and validation (Sect. 3.3);
- Processing and analysis of satellite SAR images by DInSAR technique (Sect. 3.4)
- Presentation and discussion about the achieved results (Sect. 4)

3.1. Acquisition of the dataset

A dataset (stack) made of 103 Sentinel-1 SAR scenes in ascending orbital geometry and 46 scenes in descending orbital geometry covering the study area has been acquired by the ESA archives.

In what follows, the acquisition calendar of the analyzed SAR images is reported (Figure 6, Table 1 and Table 2).

The ascending stack covers a period of about 4.5 years, while the descending one covers a period of about 2 years. More in detail, the distribution of the collected images over time is optimal for the ascending stack (2015-to date) and fairly good for the descending one (2016-2018).

The footprints of the analyzed stacks (ascending and descending) are reported in Figure 7. The magenta polygons identify the footprints of the ascending dataset, while the green polygons identify the footprints of the descending one.

Technical report

Via Vittorio Bachelet,12 00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823 e-mail: info@nhazca.com

Figure 6: temporal distribution of the analyzed SAR images.

Ascending									
ID	Date	ID	Date	ID	Date	ID	Date	ID	Date
1	29/01/2015	26	22/07/2016	51	11/07/2017	76	31/05/2018	101	02/05/2019
2	10/02/2015	27	03/08/2016	52	23/07/2017	77	12/06/2018	102	14/05/2019
3	22/02/2015	28	15/08/2016	53	04/08/2017	78	24/06/2018	103	26/05/2019
4	06/03/2015	29	27/08/2016	54	16/08/2017	79	06/07/2018		
5	18/03/2015	30	08/09/2016	55	28/08/2017	80	18/07/2018		
6	30/03/2015	31	20/09/2016	56	09/09/2017	81	30/07/2018		
7	11/04/2015	32	08/10/2016	57	21/09/2017	82	11/08/2018		
8	23/04/2015	33	20/10/2016	58	03/10/2017	83	23/08/2018		
9	05/05/2015	34	01/11/2016	59	15/10/2017	84	04/09/2018		
10	17/05/2015	35	13/11/2016	60	27/10/2017	85	16/09/2018		
11	29/05/2015	36	25/11/2016	61	08/11/2017	86	28/09/2018		
12	10/06/2015	37	07/12/2016	62	20/11/2017	87	10/10/2018		
13	28/07/2015	38	24/01/2017	63	02/12/2017	88	22/10/2018		
14	13/11/2015	39	05/02/2017	64	14/12/2017	89	03/11/2018		
15	07/12/2015	40	17/02/2017	65	26/12/2017	90	15/11/2018		
16	31/12/2015	41	01/03/2017	66	07/01/2018	91	27/11/2018		
17	24/01/2016	42	13/03/2017	67	19/01/2018	92	09/12/2018		
18	05/02/2016	43	25/03/2017	68	31/01/2018	93	21/12/2018		
19	17/02/2016	44	06/04/2017	69	12/02/2018	94	02/01/2019		
20	29/04/2016	45	18/04/2017	70	24/02/2018	95	14/01/2019		
21	11/05/2016	46	30/04/2017	71	01/04/2018	96	26/01/2019		
22	23/05/2016	47	24/05/2017	72	13/04/2018	97	15/03/2019		
23	04/06/2016	48	05/06/2017	73	25/04/2018	98	27/03/2019		
24	16/06/2016	49	17/06/2017	74	07/05/2018	99	08/04/2019		
25	28/06/2016	50	29/06/2017	75	19/05/2018	100	20/04/2019		

Table 1: acquisition dates (dd/mm/yyyy) of the analyzed SAR images for ascending stack.

Technical report

Via Vittorio Bachelet,12 00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823 e-mail: info@nhazca.com

Descending				
ID	Date	ID	Date	
1	10/10/2016	24	29/10/2017	
2	03/11/2016	25	10/11/2017	
3	27/11/2016	26	22/11/2017	
4	19/02/2017	27	04/12/2017	
5	03/03/2017	28	16/12/2017	
6	15/03/2017	29	28/12/2017	
7	27/03/2017	30	09/01/2018	
8	08/04/2017	31	21/01/2018	
9	20/04/2017	32	02/02/2018	
10	02/05/2017	33	14/02/2018	
11	14/05/2017	34	26/02/2018	
12	26/05/2017	35	22/03/2018	
13	19/06/2017	36	03/04/2018	
14	01/07/2017	37	15/04/2018	
15	13/07/2017	38	27/04/2018	
16	25/07/2017	39	09/05/2018	
17	06/08/2017	40	21/05/2018	
18	18/08/2017	41	02/06/2018	
19	30/08/2017	42	14/06/2018	
20	11/09/2017	43	26/06/2018	
21	23/09/2017	44	08/07/2018	
22	05/10/2017	45	20/07/2018	
23	17/10/2017	46	01/08/2018	

Table 2: acquisition dates (dd/mm/yyyy) of the analyzed SAR images for descending stack.

NHAZCA S.r.I.

Technical report

Via Vittorio Bachelet,12 00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823 e-mail: info@nhazca.com

Figure 7: identification of the study area (yellow star) on satellite optical image and footprint of the analyzed ascending (magenta) and descending dataset (green).

NHAZCA S.r.I.

Share capital: € 40.000 VAT n°: 10711191006 REA. N° 1250972 Prot. NZ0423-U_120719

3.2. Processing and analysis of SAR images by A-DInSAR techniques

The Persistent Scatterers Interferometry (PSI) approach has been adopted for the A-DInSAR analysis on the whole study area, by commercial software and proprietary algorithms from NHAZCA S.r.I. For the basic geographic information and geocoding of results, a Digital Elevation Model (DEM) with 30 m cell resolution has been adopted (data by SRTM, Shuttle Radar Topography Mission).

Moreover, the master images have been selected thus optimizing the temporal and the normal baselines: all other SAR images have been referred to the masters for the phase difference computations.

The selection of the PS Candidates (PSC), i.e. points characterized by good radar quality parameters making them suitable for displacement analysis, has been performed based on the analysis of the following maps:

- i) Reflectivity Map (amplitude mean values of radar images. It represents the mean reflectivity of pixels over time).
- Amplitude Stability Index Map (stability of reflectivity over time). ii)
- iii) Spatial Coherence Map (mean coherence of the generated interferograms).

Once selected the measurement points, it has been possible to estimate the phase component due to the atmospheric noise (Atmospheric Phase Screen, APS) for each image of both datasets and to remove its contribution from the interferometric phase in order to estimate high precision displacement trends for all the selected points.

The results of the analysis are reported through maps on orthophotographic basemaps that show the velocity (mm/year) of the measurement points (MP). A color scale has been adopted to represent the direction of the movement along the LOS: colors from yellow to red for MPs moving away from the sensor and colors from cyan to blue for MPs approaching the sensor; the green color indicates MPs with displacement rates in the range of the instrumental accuracy (estimated to be approximately ±2.5 mm/year).

3.3. Post-processing and validation

Starting from the results achieved by the above described A-DInSAR analysis, a postprocessing and validation process has been performed. Specifically, semi-automatic validation routines based on statistical algorithms and proprietary software tools have

Technical report

been applied, allowing for a point-to-point multi-parameter control of all the available measurement points aiming at analyzing the spatial and temporal deformational behaviors and to identify and remove unreliable outliers. The analysis was performed based on some relevant parameters such as the Temporal Coherence, the Amplitude Stability Index, the estimated velocity, the deformational trends and the estimated residual heights.

The validation procedures allowed to get about 4.300 reliable measurement points in the whole study area.

The post-processing activity, performed by qualified staff through the guided application of proprietary algorithms, allowed moreover to provide **outputs tuned for the specific site** and to extract the most useful information in terms of displacements, involved areas and local anomalies for the effective comprehension and characterization of the detected phenomena.

3.4. Processing and analysis of satellite SAR images by DInSAR technique

In order to identify deformation phenomena with markedly impulsive and/or intermittent behavior (possibly related to the occurrence of precipitation), a specific analysis has been performed by standard DInSAR technique (Differential SAR Interferometry).

DInSAR technique is based on the analysis of the phase variations (between $-\pi e + \pi$) between couples of SAR images collected at different times (namely "interferograms"), thus allowing the identification of local phase anomalies, potentially related to deformation processes.

Redundant interferograms between couples of images spanning for entire monitoring period have been analyzed both in ascending and descending geometry.

4. ACHIEVED RESULTS

Following the processing steps above described, the results of the performed A-DInSAR analysis have been achieved. Specifically, the velocity maps of measurement points (MP) along the instrumental LOS have been generated for each stack (i.e. ascending and descending orbital geometry) and for the about 5 km² wide study area. The results (Figure 8, Figure 9 and Figure 10) are reported for an area larger than the AOI scheduled by the contract, for an exhaustive characterization of the site.

About **2600 MP** have been achieved, in the full study area, **for the ascending stack** and about **1700 for the descending stack**.

In what follows are reported:

- The map of all MP for the ascending and the descending stack (Figure 8, Figure 9 and Figure 10), some 3D views of the results from different points of view are also reported for a more exhaustive visualization (Figure 11 and Figure 12);
- Combination of results from ascending and descending stacks assessment of the direction of displacements (Figure 13 and Figure 14). Specifically, by the application of proprietary algorithms, it was possible to estimate the velocity along the vertical and horizontal directions in different sectors of the landslide;
- iii) The map of MP Ascending stack (Figure 15) in which are highlighted the MP whose times series of displacement are reported in Figure 16, Figure 17 and Figure 18.

Technical report

Figure 8: velocity of MP resulting from A-DInSAR analysis in the study area (29th January 2015 – 26th May 2019) – Ascending stack. The study area is identified in red.

NHAZCA S.r.I. Share capital: € 40.000 VAT n°: 10711191006 REA. Nº 1250972

	<-12,0			
	-12,0	-8,0		
1	-8,0	-5,0		
1	-5,0	-2,5		
1	-2,5	2,5		
7	2,5	5,0		
	5,0	8,0		
<u>(</u>	8,0	12,0		
0	>12	2.0		

Area scheduled by the contract

Technical report

Figure 9: velocity of MP resulting from A-DInSAR analysis in the study area (10th October 2016 – 01th August 2018) – Descending stack. The study area is identified in red.

MEASUREMENT POINTS Velocity LOS (mm/year)

	<-12,0			
	-12,0	-8,0		
0	-8,0	-5,0		
0	-5,0	-2,5		
0	-2,5	2,5		
0	2,5	5,0		
0	5,0	8,0		
	8,0	12,0		
	>12,0			

Descending

0

Study Area

200

Area scheduled by the contract

400 m

Technical report

Figure 10: velocity of MP resulting from A-DInSAR analysis in the study area – Asending and Descending stack. The study area is identified in red.

NHAZCA S.r.I.

Share capital: € 40.000 VAT n°: 10711191006 REA. N° 1250972 MEASUREMENT POINTS Velocity LOS (mm/year)

		<-12,0			
•		-12,0	-8,0		
0	Δ	-8,0	-5,0		
0	Δ	-5,0	-2,5		
0	Δ	-2,5	2,5		
0	Δ	2,5	5,0		
0		5,0	8,0		
•		8,0	12,0		
•		>12,0			

- Ascending
- O Descending

200

Study Area

Area scheduled by the contract

400 m

Technical report

Figure 11: 3D view of the MP in the study area achieved by the ascending stack, front view.

Figure 12: 3D view of the MP in the study area achieved by the descending stack, front view.

NHAZCA S.r.I.

By the analysis of the MPs velocity maps (both in ascending and descending orbital geometry), remarkable displacements are detected in some sectors of the study area. In particular, it is highlighted a widespread sector (about 2.4 km² wide) in the central portion of the study area, with velocity rates along the LOS up to about 25 mm/y.

As it can be noticed by the above images, most of reliable MP are located in areas with sparse or no vegetation (mainly outcropping rocks, debris and clayey sectors), where the reflectivity and coherence values are higher. Some groups or isolated MPs, characterized by velocity rates up to about 13 mm/y, have been also identified in other sectors of the study area, due to the heterogeneous nature of the backscattering material.

Lastly, some sparse isolated MPs with velocities exceeding the instrumental error (about ± 2.5 mm/year) have been achieved in other areas of the study area.

By exploiting the availability of the dual orbital geometry, NHAZCA S.r.l. applied proprietary algorithms allowing for the estimation of the actual direction of movements in different sectors of the landslide. Specifically, the area was discretized in hexagonal cells on a regular grid; the results showed in Figure 13 and Figure 14 (respectively, vertical and horizontal velocity rates) are achieved for the only cells containing at least one MP from the ascending stack and one MP from the descending one. As it can be noticed, in the central sector of the study area (corresponding to a widespread portion of the main body of the landslide), horizontal displacements (toward west) are dominant. The upper sector of the landslide, due to lack of an adequate number of MP, shows only clues of deformation in vertical direction. It is worth noting that the horizontal component along the N-S direction cannot be measured because the satellites orbits are approximately meridian.

The MP whose time series of displacement are reported in Figure 16 and Figure 17, whose location is highlighted in Figure 15.

Technical report

Via Vittorio Bachelet,12 00185 Rome (Italy) Ph. +39 0695065820 J Fax. +39 0695065823 e-mail: info@nhazca.com

Figure 13: velocity in the vertical direction. Positive values = up; negative values = down.

NHAZCA S.r.I.

Share capital: € 40.000 VAT n°: 10711191006 REA. N° 1250972 Prot. NZ0423-U_120719

Technical report

Via Vittorio Bachelet,12 00185 Rome (Italy) Ph. +39 0695065820 J Fax. +39 0695065823 e-mail: info@nhazca.com

Figure 14: velocity in the horizontal direction. Positive values = East; negative values = West.

NHAZCA S.r.I.

Share capital: € 40.000 VAT n°: 10711191006 REA. N° 1250972

00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823 e-mail: info@nhazca.com HISTORICAL A-DINSAR ANALYSIS OF THE HORSESHOE BEND LANDSLIDE (NORTH DAKOTA, USA)

Technical report

Figure 15: velocity of MP resulting from A-DInSAR analysis in the study area (29th January 2015 – 26th May 2019) – Ascending stack. In white are highlighted the MP whose times series of displacement are reported in Figure 16 and Figure 17.

Technical report

Via Vittorio Bachelet,12 00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823 e-mail: info@nhazca.com

Figure 16: time series of displacement of some key MP. The location of the plotted MP is reported in Figure 15.

NHAZCA S.r.I.

Share capital: € 40.000 VAT n°: 10711191006 REA. N° 1250972

Technical report

Via Vittorio Bachelet,12 00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823 e-mail: info@nhazca.com

Figure 17: time series of displacement of some key MP. The location of the plotted MP is reported in Figure 15.

NHAZCA S.r.I.

Share capital: € 40.000 VAT n°: 10711191006 REA. N° 1250972

Technical report

Via Vittorio Bachelet,12 00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823 e-mail: info@nhazca.com

Figure 18: time series of displacement of some key MP. The location of the plotted MP is reported in Figure 15.

NHAZCA S.r.I.

Share capital: € 40.000 VAT n°: 10711191006 REA. N° 1250972

As regards the DInSAR analysis, relevant interferometric anomalies that justify slope instability processes have been identified by the ascending stacks.

By the analysis of the interferometric anomalies (both in ascending and in descending orbital geometry), it is possible to preliminary identify the most active sector in the study area (an example is reported in Figure 19), whose extension allows to clearly identify the landslide body.

No other relevant interferometric anomalies have been detected in the other sectors of the study area.

Figure 19: interferogram generated by the couple of images (in ascending orbital geometry) collected on 08th October 2016 and 06th April 2017.

5. FINAL REMARKS AND OUTLOOKS

The A-DInSAR analysis performed in the frame of the present work and, especially, the results achieved by the post-processing analyses, allowed the adequate characterization of the Horseshoe Bend study area (that is about 5 km² wide) and the identification of the main areas of attention for potential interferences with the CanAm Highway. Specifically, the most relevant information have been achieved by the ascending stack, considered more suitable based on the amount and temporal distribution of the available images.

Thanks to the high density and accuracy of information (about 4000 MP with accuracy values up to 2.5 mm/y) the achieved results are considered reliable and useful to support the site-characterization in terms of ground deformation, allowing to reach the following targets:

- the identification and mapping of the sectors of the area affected by displacement in the investigated period;
- ii) the identification of the key-sectors of the area to be monitored, also by the installation of on-site monitoring systems;
- iii) providing useful information to evaluate the design of future monitoring activities integrating satellite InSAR with on-site systems;

The most active area has been identified in the central sector of the area, corresponding to a landslide with velocity rates up to about 25 mm/y approaching the sensor along the instrumental LOS, in the ascending stack (Figure 8 and Figure 10), also shown by the time series of displacement of MPs (Figure 16, Figure 17 and Figure 18). Such process has a direct interference with the CanHam Highway and other structures in the area.

By exploiting the availability of the dual orbital geometry, horizontal (E-W) and vertical displacement rates have been derived, showing horizontal displacements (toward west) dominant with respect to vertical one, in the central sector of the study area (Figure 13 and Figure 14).

The main body of the landslide is characterized by an almost constant and spatially homogeneous displacement trends, without showing evident phases of acceleration/deceleration, in the horizontal direction.

As regards the upper sector of the landslide, due to lack of an adequate number of MP, only clues of deformation are detected, showing deformation mainly in the vertical direction (e.g. time series of MP 1 and Figure 13).

On-site additional investigations are suggested for the characterization of the processes.

Some groups or isolated MPs, characterized by velocity rates up to about 13 mm/y, have been also identified in other sectors of the study area, with no direct interference with the CanAm Highway, due to the heterogeneous nature of the backscattering material.

Finally, standard DInSAR techniques have been applied. Also in this case, information about ground deformation have been achieved in the central sector of the area (Figure 19), affected by a landslide.

Combining the results achieved by A-DInSAR and standard DInSAR analyses, a hypothesis of landslide perimeter is achievable, whose boundaries are based on interferometric results supported by preliminary geomorphologic interpretation (Figure 20).

Figure 20: hypothesis of landslide boundary based on interferometric results supported by preliminary geomorphologic interpretation.

In order to improve the A-DInSAR results during a potential monitoring stage, the sectors of the slope not covered by MP could be analyzed through the installation of artificial corner reflectors (Figure 21). The design and installation of a network of such artificial targets will allow to increase spatial coverage of MP, in order to get displacements information, starting from the installation date, with very high accuracy and to characterize a larger portion of the slope.

Figure 21: example of a corner reflector designed and assembled by NHAZCA S.r.l. in a vegetated area with no suitable radar targets. The example on the right show the "birth" of a new measurement point starting from the installation of a corner reflector, allowing to detect displacements in a sector previously lacking MP.

In this regard, we propose a preliminary selection of possible locations for corner reflectors, which would allow a more comprehensive investigation of the phenomenon, adding measurement points in areas currently lacking (Figure 22).

00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823

Via Vittorio Bachelet.12

e-mail: info@nhazca.com

HISTORICAL A-DINSAR ANALYSIS OF THE HORSESHOE BEND LANDSLIDE (NORTH DAKOTA, USA)

Technical report

Figure 22: proposal for the location of Corner Reflectors.

Alternatively, given the extent of the deformations involving the highway, monitoring could be integrated by the installation of a TInSAR (Terrestrial SAR Interferometer, Figure 23) system, which would guarantee continuous monitoring with much higher acquisition frequencies (in the order of a few minutes), allowing the setting of a real-time alert system (Figure 24).

Considering the prevalent deformation in the horizontal direction (Figure 14), this kind of solution allows to detect displacements from an ideal line of sight. In addition, an installation of artificial reflector is not needed, although is advisable.

The exact location of the monitoring station could only be defined after an appropriate technical inspection, considering the site-specific characteristics, in consideration of the presence of vegetation and the expected prevailing direction of movement.

Via Vittorio Bachelet,12 00185 Rome (Italy) Ph. +39 0695065820 | Fax. +39 0695065823 e-mail: info@nhazca.com HISTORICAL A-DINSAR ANALYSIS OF THE HORSESHOE BEND LANDSLIDE (NORTH DAKOTA, USA)

Technical report

Figure 23: example of a Terrestrial SAR Interferometer installed by NHAZCA S.r.I.

Figure 24: preliminary hypothesis of location of TInSAR.

6. **BIBLIOGRAPHY**

Hanssen, Ramon F. (2001), "Radar Interferometry: Data Interpretation and Error Analysis", Kluwer Academic, ISBN 9780792369455.

Massonnet, D.; Feigl, K. L. (1998), "Radar interferometry and its application to changes in the earth's surface", Rev. Geophys.36(4): 441–500, Bibcode: 1998 RvGeo. 36.441M, doi: 10.1029/97RG03139.

Appendix F Global Stability Analysis

Figures

Global Stability Analysis, Plan View
Global Stability Analysis, Section A
Global Stability Analysis, Section B
Global Stability Analysis, Section C
Global Stability Analysis, Section D
Global Stability Analysis, Section E
Global Stability Analysis, Section F
Global Stability Analysis, Section G

C	20	00	400	
E	Scale	in Feet		\$ 1

February 2020

102116-200

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. F-1

Date: 02/10/2020 File Name: Section A.gsz Name: 01 Back-analysis Lower

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section A.gsz Name: 01 Back-analysis Upper

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section A.gsz Name: 02 Construction

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section A.gsz Name: 03 Shafts and Anchors

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section A.gsz Name: 04 Overtopping

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section B.gsz Name: 01 Back-analysis Lower

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=110,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section B.gsz Name: 01 Back-analysis Upper

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=110,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section B.gsz Name: 02 Construction

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=110,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section B.gsz Name: 03 Anchored Shafts

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=110,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section B.gsz Name: 04 Overtopping

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=110,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section C.gsz Name: 01 Back-analysis Lower

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section C.gsz Name: 01 Back-analysis Upper

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/10/2020 File Name: Section C.gsz Name: 02 Construction

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section C.gsz Name: 03 Shafts and Anchors

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section C.gsz Name: 04 Overtopping

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Lower_Residual	Shear/Normal Fn.	125	Resid_LL=90,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section D.gsz Name: 01 Back Analysis

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section D.gsz Name: 02 Construction

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section D.gsz Name: 03 Anchored Shafts

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section D.gsz Name: 04 Overtopping

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezo Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section E.gsz Name: 01 Back-analysis

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezor Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=100, CF>50			0	1

Date: 02/11/2020 File Name: Section E.gsz Name: 02 Construction

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezor Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=100, CF>50			0	1

Date: 02/11/2020 File Name: Section E.gsz Name: 03 Anchored Shafts

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezon Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=100, CF>50			0	1

Date: 02/11/2020 File Name: Section E.gsz Name: 04 Overtopping

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezon Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=100, CF>50			0	1

Date: 02/11/2020 File Name: Section F.gsz Name: 01 Back-analysis

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=110, CF>50			0	1

Date: 02/11/2020 File Name: Section F.gsz Name: 02 Construction

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=110, CF>50			0	1

Date: 02/11/2020 File Name: Section F.gsz Name: 03 Anchored Shafts

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=110, CF>50			0	1

Date: 02/11/2020 File Name: Section F.gsz Name: 04 Overtopping

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=110, CF>50			0	1

Date: 02/11/2020 File Name: Section G.gsz Name: 01 Back-analysis

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section G.gsz Name: 02 Construction

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section G.gsz Name: 03 Anchors

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Date: 02/11/2020 File Name: Section G.gsz Name: 04 Overtopping

Color	Name	Model	Unit Weight (pcf)	Strength Function	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Bedrock	Mohr-Coulomb	125		200	24	0	1
	Fill	Mohr-Coulomb	125		50	25	0	1
	Landslide Debris	Mohr-Coulomb	120		50	25	0	1
	Landslide Debris Upper_Residual	Shear/Normal Fn.	125	Resid_LL=105,25 <cf<45< td=""><td></td><td></td><td>0</td><td>1</td></cf<45<>			0	1

Important Information About Your Geotechnical Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent

such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland.